Mathematics

Let $$f(x)= \left| \begin{matrix} \sec { x }  & \cos { x }  & \sec { ^{ 2 }x+\cot { x\csc { x }  }  }  \\ \cos { ^{ 2 }x }  & \cos { ^{ 2 }x }  & \csc { ^{ 2 }x }  \\ 1 & \cos { ^{ 2 }x }  & \cos { ^{ 2 }x }  \end{matrix} \right|$$. Then $${\int}_{0}^{\pi/2}f(x)dx$$ is equal to 


ANSWER

$$\dfrac{15\pi}{60}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
If $$n\rightarrow \infty $$ then the limit of series in $$n$$ can be evaluated by following the rule : $$\displaystyle \lim_{n\rightarrow \infty}\sum_{r=an+b}^{cn+d}\frac{1}{n}f\left ( \frac{r}{n} \right )=\int_{a}^{c}f(x)dx,$$ where in $$LHS$$, $$\dfrac{r}{n}$$ is replaced by $$x$$, $$\dfrac{1}{n}$$ by $$dx$$ and the lower and upper limits are $$\lim_{n\rightarrow \infty }\dfrac{an+b}{n}\, and \, \lim_{n\rightarrow \infty }\dfrac{cn+d}{n}$$ respectively. Then answer the following question. 
$$\lim_{n\rightarrow \infty }\left \{ \dfrac{1}{\sqrt{4n-1^{2}}}+\dfrac{1}{\sqrt{8n-2^{2}}} +...+\dfrac{1}{\sqrt{3}n}\right \}$$ equals?
  • A. $$\dfrac{\pi }{6}$$
  • B. $$\dfrac{4\pi }{6}$$
  • C. $$\dfrac{\pi }{4}$$
  • D. $$\dfrac{\pi }{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 One Word Medium
Let $$I = \int_1^3 | (x - 1) (x - 2) (x - 3) |dx$$. The value of $$I^{-1}$$ is

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Multiple Correct Hard
Let $$S_{n}= \sum_{k= 1}^{n}\displaystyle \frac{n}{n^{2}+kn+k^{2}}, T_{n}= \sum_{k= 0}^{n-1}\displaystyle \frac{n}{n^{2}+kn+k^{2}}$$ for $$n= 1, 2, 3...$$ Then
  • A. $$S_{n}> \displaystyle \frac{\pi }{3\sqrt{3}}$$
  • B. $$T_{n}< \displaystyle \frac{\pi }{3\sqrt{3}}$$
  • C. $$S_{n}< \displaystyle \frac{\pi }{3\sqrt{3}}$$
  • D. $$T_{n}> \displaystyle \frac{\pi }{3\sqrt{3}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Given, $$f(x) = \begin{vmatrix} 0 & {x^2 - \sin x} & {\cos x - 2} \\ {\sin x -x^2} & 0 & {1 - 2x} \\ {2 - \cos x} & {2x - 1} & 0 \end{vmatrix}$$, then $$\displaystyle \int f(x) dx$$ is equal to
  • A. $$\frac{x^3}{3} - x^2 \sin x + \sin 2x + C$$
  • B. $$\frac{x^3}{3} - x^2 \sin x + \cos 2x + C$$
  • C. $$\frac{x^3}{3} - x^2 \cos x + \cos 2x + C$$
  • D. None of the above

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
If $$A=\displaystyle \int_{0}^{1}{\dfrac{{e}^{t}}{1+t}}dt$$ then $$\displaystyle \int_{0}^{1}{{e}^{t}ln(1+t)}dt=$$
  • A. $$e\ ln{2}+A$$
  • B. $$Ae\ ln{2}$$
  • C. $$A\ ln{2} $$
  • D. $$e\ ln{2}-A$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer