Mathematics

# Let $f\left( x \right) = \sin 2x\,\sin \left( {\frac{\pi }{2}\cos x} \right)\,\,and\,\,g\left( x \right) = \frac{{f\left( x \right)}}{{2x - \pi }}$$\int_0^\pi {f\left( x \right)dx = }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the integral $\displaystyle\int_{-4}^{4}|x+2|\ dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Medium
Evaluate:$\displaystyle \int \frac{dx}{\sqrt{9+4x^{2}}}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate $\displaystyle \overset { 7 }{ \underset { 4 }{ \int } } \dfrac{(11 - x)^2}{x^2 + ( 11 - x)^2} dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate: $\displaystyle\int\dfrac{\left(\sqrt{x}+1\right)\left(x^2-\sqrt{x}\right)}{x\sqrt{x}+x+\sqrt{x}}dx=$

Find the value $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^{2017}x\cos ^{2018}x\ dx$.