Mathematics

# Let $f:\left[ -2,3 \right] \rightarrow \left[ 0,\infty \right)$ be a continuous function such that $f\left( 1-x \right) -f\left( x \right)$ for all $x\epsilon \left[ -2,3 \right]$.If ${ R }_{ 1 }$ is the numerical value of the area of the region bounded by $y=f\left( x \right) ,x=-2,x=3$ and the axis of x and ${ R }_{ 2 }=\int _{ 2 }^{ 3 }{ xf\left( x \right) dx }$, then:-

##### SOLUTION
${ R }_{ 1 }=\int _{ -2 }^{ 3 }{ f\left( x \right) dx }$
${ R }_{ 2 }=\int _{ -2 }^{ 3 }{ xf\left( x \right) dx }$
$=\int _{ -2 }^{ 3 }{ \cfrac { xf\left( x \right) +\left( 1-x \right) f\left( 1-x \right) }{ 2 } dx }$
$=\int _{ -2 }^{ 3 }{ \cfrac { xf\left( x \right) +(1-x)f\left( x \right) }{ 2 } dx }$
$=\cfrac { 1 }{ 3 } \int _{ -2 }^{ 3 }{ f\left( x \right) dx } =\cfrac { { R }_{ 1 } }{ 2 }$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
Evaluate: $\displaystyle\int_\alpha^\beta{\sqrt{\frac{x-\alpha}{\beta-x}}dx}$.
• A. $\dfrac {\pi}2(\alpha-\beta)$
• B. $\pi(\beta-\alpha)$
• C. $\pi(\alpha-\beta)$
• D. $\dfrac {\pi}2(\beta-\alpha)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate:
$\int { \sqrt { 4-{ x }^{ 2 } } } dx\quad$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Solve: $\int e^{2x}. \sin 3x \,dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Solve:
$\displaystyle \int_{1}^{\sqrt{3}} \cfrac{d x}{1+x^{2}} \text { equals }$
• A. $\dfrac {\pi}{3}$
• B. $\dfrac {2\pi}{3}$
• C. $\dfrac {\pi}{6}$
• D. $\dfrac {\pi}{12}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 One Word Medium
$\sqrt{2}\displaystyle \int _{ 0 }^{ 2\pi }{ \sqrt { 1-\sin { x } } dx } =$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020