Mathematics

Let $$\displaystyle\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ t }dt }{ 1+t }  } $$ then $$\displaystyle \int _{ a-1 }^{ a }{ \dfrac { { e }^{ t }dt }{ t-a-1 }  } $$


ANSWER

$$Ae^ {a}$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 109
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
If $$f(x) = x - x^2 +1$$ & $$g(x)=max\left \{ f(t) ;0\leq t< x \right \}$$, then $$\overset {1}{\underset { 0 }{ \int } }  g (x) dx = ?$$
  • A. $$\dfrac{7}{6}$$
  • B. $$\dfrac{5}{4}$$
  • C. none of these
  • D. $$\dfrac{29}{24}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following definite integral:
$$\displaystyle \int_{1}^{2}\dfrac {1}{\sqrt {(x-1) (2-x)}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$y(x-y)^{2}=x$$ then $$\displaystyle\int { \cfrac { 1 }{ x-3y } dx } $$ is 
  • A. $$\dfrac{1}{4}\ln { \left( { \left( x-y \right) }^{ 2 }-1 \right) } $$
  • B. $$\dfrac{1}{2}\ln { \left( { \left( x-y \right) }^{ 2 }-1 \right) } $$
  • C. $$\dfrac{1}{6}\left( \ln { \left( { x }^{ 2 }-{ y }^{ 2 } \right) } -1 \right) $$
  • D. $$\dfrac{1}{3}\ln { \left( 1+{ \left( x-y \right) }^{ 2 } \right) } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle{\int e^{x} \left \{\dfrac {1 + \sin x \cos x}{\cos^{2}x}\right \}dx =}$$
  • A. $$e^{x}\cos x + c$$
  • B. $$e^{x} \sec x \tan x + c$$
  • C. $$e^{x} \cos^{2}x - 1 + c$$
  • D. $$e^{x} \tan x + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Prove that $$\displaystyle\int_0^{\pi/2}$$ $$ln(\sin x)dx=\displaystyle\int_0^{\pi/2}ln(cos x)dx=\int_0^{\pi/2}\,\,ln(sin2x)dx=-\dfrac{\pi}{2}.ln 2$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer