Passage

Let $$\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$$

Then answer the following question.
Mathematics

$$\int_{0}^{\pi }xf\left ( x \right )dx=$$


Answer & Solution

$$\displaystyle \frac{8}{\pi ^{2}}$$


SOLUTION
Given $$\displaystyle =\int_{0}^{\pi }xf\left ( x \right )dx=\dfrac{1}{2}\int_{0}^{\pi }\dfrac{\left ( 2x-\pi +\pi  \right )\sin 2x\sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }dx$$
   $$=\displaystyle \dfrac{1}{2}\int_{0}^{\pi }\sin 2x\sin \left ( \dfrac{\pi }{2}\cos x \right )dx+\dfrac{\pi }{2}\int_{0}^{\pi }f\left ( x \right )dx$$
   $$=\displaystyle \dfrac{1}{2}\int_{0}^{\pi }\sin 2x\sin \left ( \dfrac{\pi }{2}\cos x \right )dx+0$$          (As $$\int_{0}^{\pi }f\left ( x \right )dx=0$$)
   $$\displaystyle =\dfrac{2}{\pi }\int_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}\dfrac{2t}{\pi }\sin tdt=\dfrac{4}{\pi ^{2}}\int_{-\dfrac{\pi }{2}}^{\dfrac{\pi }{2}}t\sin tdt=\dfrac{8}{\pi ^{2}}\int_{0}^{\dfrac{\pi }{2}}t\sin tdt=\dfrac{8}{\pi ^{2}}$$
(Substituting $$\displaystyle \dfrac{\pi }{2}\cos x=t$$ then for $$x=0$$, $$\displaystyle t=\dfrac{\pi }{2}$$ and $$x=\pi $$, $$\displaystyle t=-\dfrac{\pi }{2}$$)
View Answers

You're just one step away


Single Correct Medium Published on 17th 09, 2020
Mathematics

$$\int_{0}^{\pi }f\left ( x \right )dx=$$


Answer & Solution

$$0$$


SOLUTION
$$\displaystyle I=\int_{0}^{\pi }f\left ( x \right )dx=\int_{0}^{\pi }\dfrac{\sin 2x\sin \left ( \dfrac{\pi }{2}.\cos x \right )}{2x-\pi }dx$$
$$\therefore $$   $$\displaystyle I=\int_{0}^{\pi }\dfrac{\sin 2\left ( \pi -x \right )\sin \left ( \dfrac{\pi }{2}.\cos \left ( \pi -x \right ) \right )}{2\left ( \pi -x \right )-\pi }dx$$
     $$\displaystyle =\int_{0}^{\pi }\dfrac{\left ( -1 \right )\sin 2x.\sin \left ( \dfrac{\pi }{2}\cos x \right )}{\pi -2x}dx=-I$$
$$\therefore $$   $$2I=0$$     $$\therefore $$   $$I=0$$
View Answers

You're just one step away


Single Correct Hard Published on 17th 09, 2020
Questions 203550
Subjects 9
Chapters 126
Enrolled Students 334
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\int _{ 0 }^{ \pi  }{ x } In\left( \sin { x }  \right) dx=$$
  • A. $$\dfrac { \pi }{ 2 } ln\ 2$$
  • B. $$\dfrac { -{ \pi }^{ 2 } }{ 2 } ln\ 2$$
  • C. $$-\dfrac { \pi }{ 2 } ln2$$
  • D. $$\ ln\ 2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate $$\int \tan^{-1}\left\{\sqrt{\left(\dfrac{1-\cos 2 x}{1+ \cos2 x}\right)}\right\}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
Evaluate $$\displaystyle{\int}^{\pi}_0 \dfrac{x \sin x}{1+\cos^2 x}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \int_{0}^{\pi/2}\frac{\cos^4x}{\cos^4x+\sin^4x}dx=?$$
  • A. $$\dfrac{\pi}{4}$$
  • B. $$\dfrac{\pi}{2}$$
  • C. $$\dfrac{\pi}{8}$$
  • D. $$\pi$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 One Word Hard
$$\displaystyle \int \frac{\cos x}{5-3\cos x}dx=-\frac{1}{3}x+\frac{k}{6}\tan ^{-1}\left [ 2\tan \frac{x}{2} \right ].$$ Find the value of $$k$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer