Mathematics

$$\int^{\pi/3}_0 \dfrac{tan x}{\sqrt{2k sec x}} dx = 1-\dfrac{1}{\sqrt{2}}$$, then the value of k is 


ANSWER

$$2$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle \lim _{ n\rightarrow \infty  }{ \sum _{ r=1 }^{ n }{ \dfrac { 1 }{ n }  }  } \sqrt { \left[ \dfrac { n+r }{ n-r }  \right]  }$$
  • A. $$\dfrac { \pi }{ 2 } $$
  • B. $$2\pi$$
  • C. $$\dfrac { \pi }{ 2 } -1$$
  • D. $$\dfrac { \pi }{ 2 } +1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve:
$$\int \frac{dx}{\sqrt{4-x^{2}}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int_0^{2a} f(x) dx = 0$$ is
  • A. $$\displaystyle \int_0^{2a} f(2a - x) =\int_0^{2a} f(x)$$
  • B. $$\displaystyle \int_0^{2a} f(x) = -\int_0^{2a} f (x)$$
  • C. $$\displaystyle \int_0^{2a} f(-x) = \int_0^{2a} f(x)$$
  • D. $$\displaystyle \int_0^{2a} f(2a - x) = - \int_0^{2a} f(x)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
 lf $$I_{m,n}=\displaystyle \int x^{m}(\log x)^{n}dx$$, then$$I_{m,n}-\displaystyle \frac{x^{m+1}}{(m+1)}(\log x)^{n}=$$
  • A. $$\displaystyle \frac{n}{m+1},I_{mn-1}$$
  • B. $$\displaystyle \frac{m}{n+1},I_{mn-1}$$
  • C. $$\displaystyle \frac{n}{m+1}.I_{m-1}, n-1$$
  • D. $$-\displaystyle \frac{n}{m+1},I_{mn-1}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate $$\int \dfrac{{1 - {x^2}}}{{x\left( {1 - 2x} \right)}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer