Mathematics

$\int sin^{2/3}x cos^{3}x dx$

SOLUTION
$\displaystyle\int \sin^{2/3}x\cos^3xdx$
$=\displaystyle\int \sin^{2/3}x\cos^2x\cos xdx$
$=\displaystyle\int \sin^{2/3}x(1-\sin^2x)\cos xdx$
$=\displaystyle\int \sin^{2/3}x\cos xdx-\displaystyle\int \sin^{2/3+2}x\cos xdx$
$=\displaystyle\int \sin^{2/3}x\cos xdx-\displaystyle\int \sin^{5/2}x\cos xdx$
Let $t=\sin x$
$\Rightarrow dt=\cos xdx$
$=\displaystyle\int t^{2/3}dt-\displaystyle\int t^{5/2}dt$
$=\dfrac{t^{2/3+1}}{2/3+1}-\dfrac{t^{5/2+1}}{5/2+1}+c$
$=\dfrac{t^{5/2}}{5/3}-\dfrac{t^{7/2}}{7/2}+c$ where c is the constant of integration
$=\dfrac{3(\sin x)^{5/3}}{5}-\dfrac{2(\sin x)^{7/2}}{7}+c$
$=\dfrac{3\sin^{5/3}x}{5}-\dfrac{2}{7}\sin^{7/2}x+c$ where $t=\sin x$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Medium
Solve :
$\int \dfrac{\log x^3}{x}\ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle I= \int e^{x}\frac{\left ( 2+\sin 2x \right )}{\left ( 1+\cos 2x \right )}dx.$
• A. $\displaystyle e^{x}\sin x.$
• B. $\displaystyle e^{x}\cos x.$
• C. $\displaystyle e^{x}\cos2x.$
• D. $\displaystyle e^{x}\tan x.$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $a,b$ and $c$ are real numbers then the value of $\mathop {\lim }\limits_{t \to 0} {l_n}\left( {\frac{1}{t}\int_0^1 {{{\left( {1 + a\sin bx} \right)}^{\frac{c}{x}}}dx} } \right)$ equals
• A. $\dfrac{{ab}}{c}$
• B. $\dfrac{{bc}}{a}$
• C. $\dfrac{{ca}}{b}$
• D. $abc$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Let $g(x) = \int_{0}^{x} f(t) dt$, where $f$ is such that $\dfrac {1}{2} \leq f(x) \leq 1$ for $t\epsilon [0, 1]$ and $0\leq f(t) \leq \dfrac {1}{2}$ for $t\epsilon [1, 2]$. Then, $g(2)$ satisfies the inequality.
• A. $-\dfrac {3}{2}\leq g(2) < \dfrac {1}{2}$
• B. $0\leq g(2) < 2$
• C. $2 < g (2) < 2$
• D. $\dfrac {1}{2} \leq g(2) \leq \dfrac {3}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Hard
Let us consider the integral of the following forms
$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$
Case I If $m>0$, then put $\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$
Case II If $p>0$, then put $\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$
Case III If quadratic equation $mx^2+nx+p=0$ has real roots $\alpha$ and $\beta$, then put $\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020