Mathematics

# $\int \dfrac { \left( { x }^{ 2 }-1 \right) }{ \left( { x }^{ 2 }-1 \right) \sqrt { { x }^{ 2 }-1 } } dx$ is equal to

$\sec ^{ -1 }{ \left( \dfrac { { x }^{ 2 }+1 }{ \sqrt { 2x } } \right) +c }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Evaluate: $\displaystyle\int (3-2x).\sqrt{2+x-x^2}dx.$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve $\displaystyle\int { \dfrac { x }{ \sqrt { x+4 } } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
By using the properties of definite integrals, evaluate the integral   $\displaystyle \int_0^{\tfrac {\pi}{2}}(2 \log \sin x- \log \sin 2x) dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 TRUE/FALSE Hard
$\displaystyle \int_1^e \log(x) dx= \displaystyle \lim_{n \rightarrow \infty} \displaystyle \sum_{i=1}^n \log \left(1+i\dfrac{e-1}{n} \right)$
State whether the above equation is True or False?
• A. True
• B. False

$\int \frac{1}{1+x}\;dx$