Mathematics

$\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\frac{{1 + \sin x}}{{{{\cos }^2}x}}dx}$

SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Medium
The value of $\displaystyle\int\limits_{-1}^1x|x|\ dx=$
• A. $\dfrac{1}{2}$
• B. $1$
• C. none of these
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate:

$\displaystyle\int_{0}^{\pi/2}\dfrac{\sin\theta}{\sqrt{1+\cos\theta}}d\theta$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate the rational function   $\cfrac {x}{(x^2+1)(x-1)}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Prove that:
$\int _{ }^{ }{ \sqrt { { a }^{ 2 }-{ x }^{ 2 } } } dx=\cfrac { x }{ 2 } \sqrt { { a }^{ 2 }-{ x }^{ 2 } } +\cfrac { { a }^{ 2 } }{ 2 } \sin ^{ -1 }{ \left( \cfrac { x }{ a } \right) } +c$

Evaluate $\displaystyle \int x^{2}e^{x}dx$.