Mathematics

# Integrate:$\int \sin x \sqrt { 1 + \cos 2 x } d x$

##### SOLUTION

$\\\int\>sinx\sqrt{1+(2cos^2x-1)}dx\\=\int\>sinx\times\sqrt{2}\>cosx\>dx\\=\sqrt{2}\int\>sinx\>cosx\>dx\\=(\frac{\sqrt{2}}{2})\int\>sin2x\>dx\\=(\frac{1}{\sqrt{2}})\left[-(\frac{cos2x}{2})\right]+C\\=(\frac{-cos2x}{2\sqrt{2}})+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium

$\displaystyle \int_{0}^{\pi /2}\log(\sin 2x)dx=$
• A. $\displaystyle \frac{\pi}{2}$ log2
• B. $\displaystyle \frac{\pi}{3}$ log2
• C. $\pi$ log2
• D. $-\displaystyle \frac{\pi}{2}$ log2

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Write a value of
$\int { { e }^{ x }\left( \sin { x } +\cos { x } \right) } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate $\dfrac x{ \sqrt {1-x^2}}$ w.r.t $x$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle\int^{\dfrac{\pi}{4}}_0\dfrac{x\sin x}{\cos^3x}dx$.

Solve : $\int x^2 ( 1 - \dfrac{1}{x^2}) dx$