Mathematics

Integrate:
$$\int _{ -\pi  }^{ \pi  }{ \dfrac { 2x(1+\sin { x } ) }{ 1+{ cos }^{ 2 }x }  } { dx }\\$$ is?


ANSWER

$$\\ \dfrac { { \pi }^{ 2 } }{ 4 }$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$f(x) \begin{vmatrix} x & cosx & e^{ { x^{ 2 } } } \\ sin\quad x & x^{ 2 } & sec\quad x \\ tan\quad x & x^ 4 & 2x^ 2 \end{vmatrix}$$ then $$\displaystyle \int_{-\pi/2}^{\pi/2}f(x)dx=$$
  • A. $$1$$
  • B. $$2$$
  • C. $$3$$
  • D. $$0$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
If $$\displaystyle f\left ( x \right )$$ and $$\displaystyle g\left ( x \right )$$ be continuous functions over the closed interval $$\displaystyle \left [ 0, a \right ]$$ such that $$\displaystyle f\left ( x \right )= f\left ( a-x \right )$$ and $$\displaystyle g\left ( x \right )+g\left ( a-x \right )= 2.$$ Then $$\displaystyle \int_{0}^{a}f\left (x \right )\dot g\left (x \right )dx$$ is equal to
  • A. $$\displaystyle \int_{0}^{a}g\left ( x \right )dx$$
  • B. $$\displaystyle 2a$$
  • C. none of these
  • D. $$\displaystyle \int_{0}^{a}f\left ( x \right )dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Find: $$\displaystyle\int { \dfrac { { \left( { x }^{ 4 }-x \right)  }^{ \dfrac { 1 }{ 4 }  } }{ { x }^{ 5 } }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
$$\int { { cosec }^{ 3 }x } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
The value  of the definite integral, $$I = \int _{ 0 }^{ \sqrt { 10 }  }{ \dfrac { x }{ { e }^{ { x }^{ 2 } } }  } dx$$ is equal to 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer