Mathematics

# Integrate:$\int e^x\sin x.dx$

##### SOLUTION
$I=\int { { e }^{ x }\sin xdx } \\ ={ e }^{ x }\int { \sin xdx } +\int { \left[ \dfrac { d }{ dx } { e }^{ x }.\int { \sin xdx } \right] dx } \\ =-{ e }^{ x }\cos x-\int { { e }^{ x }\cos xdx } \\ =-{ e }^{ x }\cos x-\left[ { e }^{ x }\int { \cos xdx } +\int { \left[ \dfrac { d }{ dx } { e }^{ x }.\int { \cos xdx } \right] dx } \right] \\ =-{ e }^{ x }\cos x-{ e }^{ x }\sin x-\int { { e }^{ x }\sin xdx } \\ I=-{ e }^{ x }\cos x-{ e }^{ x }\sin x-I\\ 2I=-{ e }^{ x }(\cos x+\sin x)\\ I=-\dfrac { { e }^{ x } }{ 2 } (\cos x+\sin x)$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Integrate the following functions w.r.t $X :\dfrac{1}{\sqrt x+ \sqrt{x^3}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral:
$\int { \left( x+2 \right) } \sqrt { { x }^{ 2 }+x+1 } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle \frac{1-\cos x}{\cos x (1+\cos x)} = \frac{\sin \alpha}{\cos x} - \frac{2}{1+ \cos x}$ then $\alpha =$
• A. $\dfrac {\pi}8$
• B. $\dfrac {\pi}4$
• C. $\pi$
• D. $\dfrac {\pi}2$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
The value of $\int_{0}^{\infty} x.e^{-x^{2}}dx_{=}$
• A. $1$
• B. $- 1/2$
• C. $0$
• D. $1/2$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020