Mathematics

# Integrate:$\displaystyle\int {{1 \over {\sqrt {{{(2 - x)}^2} + 1} }}}$

##### SOLUTION

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
Evaluate : $\displaystyle\int^1_0\sqrt{\dfrac{1-x}{1+x}}dx$
• A. $\dfrac{\pi}{2}$
• B. $\left(\dfrac{\pi}{2}+1\right)$
• C. None of these
• D. $\left(\dfrac{\pi}{2}-1\right)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve $\displaystyle \int \sec^{2}(7-4x) dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Value of $\displaystyle \int_{0}^{\pi }x\log \, \sin x\: dx$ is
• A. $\displaystyle \frac{\pi ^{2}}{2}\log 2$
• B. $-\pi ^{2}\log 2$
• C. $\pi \log 2$
• D. $-\displaystyle \frac{\pi^2 }{2}\log 2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
If $I_{1} = \int_{0}^{1} 2^{x^{3}} dx, I_{2} = \int_{0}^{1}2^{x^{2}}dx, I_{3} = \int_{1}^{2}2^{x^{2}}dx$ and $I_{4} = \int_{1}^{2}2^{x^{3}}dx$, then
• A. $I_{2} > I_{1}$
• B. $I_{3} > I_{4}$
• C. $I_{1} > I_{3}$
• D. $I_{1} > I_{2}$

Evaluate $\int { \dfrac { { x }^{ 2 } }{ \sqrt { { x }^{ 6 }+{ a }^{ 6 } } } dx }$