Mathematics

Integrate with respect to x:
$$\sec^2 x\tan x$$.


ANSWER

$$\dfrac{tan^2x}{2}+C$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of integral $$\displaystyle \int _{ \pi /4 }^{ 3\pi /4 }{ \frac { x }{ 1+\sin x } dx } $$ is 
  • A. $$\pi \sqrt { 2 } $$
  • B. $$\dfrac { \pi }{ 2 } (\sqrt { 2 } +1)$$
  • C. $$2\pi (\sqrt { 2 } -1)$$
  • D. $$\pi (\sqrt { 2 } -1)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Let $$f$$ be a positive function. Let
$${ I }_{ 1 }=\int _{ 1-k }^{ k }{ xf\left\{ x(1-x) \right\}  } dx$$
$${ I }_{ 2 }=\int _{ 1-k }^{ k }{ f\left\{ x(1-x) \right\}  } dx$$
where $$2k-1>0$$. Then $$\cfrac { { I }_{ 1 } }{ { I }_{ 2 } } $$
  • A. $$2$$
  • B. $$k$$
  • C. $$1$$
  • D. $$\cfrac { 1 }{ 2 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\int { { cosec }^{ 4 }x\ \  dx\quad  } $$
  • A. $$\cot { x+\dfrac { \cot ^{ 3 }{ x } }{ 3 } } +\quad c$$
  • B. $$\tan { x +\dfrac { \tan ^{ 3 }{ x } }{ 3 } } +\quad c$$
  • C. $$-\tan { x-\dfrac { \tan ^{ 3 }{ x } }{ 3 } } +\quad c$$
  • D. $$-\cot { x- } \dfrac { \cot ^{ 3 }{ x } }{ 3 } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle\int\dfrac{4e^{x}+6e^{-x}}{9e^{x}-4e^{-x}}dx=Ax+B \log |9e^{2x}-4|+c$$, then $$(A,B)=$$
  • A. $$\left(\dfrac{-19}{36},\dfrac{35}{36}\right)$$
  • B. $$\left(\dfrac{19}{36},\dfrac{-35}{36}\right)$$
  • C. $$\left(\dfrac{3}{2},\dfrac{-35}{36}\right)$$
  • D. $$\left(\dfrac{-3}{2},\dfrac{35}{36}\right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle I_{1}=\int_{0}^{1}(1-x^{2})^{1/3} dx$$  &  $$\displaystyle I_{2}=\int_{0}^{1}(1-x^{3})^{1/2} dx$$

On the basis of above information, answer the following questions: 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer