Mathematics

Integrate with respect to $$x$$.:
$$e^{x}(\text{sec}^2 {x}+\tan x)$$


SOLUTION
$$\int e^{x} (f(x)+ f (x))dx = e^{ x} f (x)$$
$$\Rightarrow \int e^{x} (\tan + \sec^{2} x)= e^{x} \tan x +c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\displaystyle \frac{dI}{dy}=3^{\cos y}.\sin y$$ then $$I$$ is equal to
  • A. $$\displaystyle 3^{\cos y}+c$$
  • B. $$\displaystyle \sin y+c$$
  • C. $$3^{\sin y}+c$$
  • D. $$\displaystyle - \dfrac{3^{\cos y}}{\log 3}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Value of $$ \displaystyle \int_{1}^{5} \left(\sqrt {x+2\sqrt {x-1}}+\sqrt {x-2(x-1)}\right)dx$$ is
  • A. $$\dfrac {16}{3}$$
  • B. $$\dfrac {32}{3}$$
  • C. $$\dfrac {34}{3}$$
  • D. $$\dfrac {8}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Multiple Correct Hard
The value of the integral $$\displaystyle \int_{0}^{\pi /2}\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx$$ is
  • A. $$\displaystyle \pi /2$$
  • B. $$\displaystyle \int_{\pi /8}^{3\pi/8 }\frac{\sqrt{\cot x}}{\sqrt{\cot x}+\sqrt{\tan x}}dx$$
  • C. $$\displaystyle \pi /4$$
  • D. $$\displaystyle \int_{0}^{\pi /2}\frac{dx}{1+\tan ^{3}}x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium

The value of $$\displaystyle \int_1^e {\frac{1}{x}(1 + \log x)dx} $$ is

  • A. $$\displaystyle \frac{1}{2}$$
  • B. e
  • C. $$\displaystyle \frac{1}{e}$$
  • D. $$\displaystyle \frac{3}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
The average value of a function f(x) over the interval, [a,b] is the number $$\displaystyle \mu =\frac{1}{b-a}\int_{a}^{b}f\left ( x \right )dx$$
The square root $$\displaystyle \left \{ \frac{1}{b-a}\int_{a}^{b}\left [ f\left ( x \right ) \right ]^{2}dx \right \}^{1/2}$$ is called the root mean square of f on [a, b]. The average value of $$\displaystyle \mu $$ is attained id f is continuous on [a, b].

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer