Mathematics

Integrate the function  $$e^{2x+3}$$


SOLUTION
Put $$2x+3=t$$
$$\therefore 2dx=dt$$
$$\displaystyle \Rightarrow e^{2x+3}dx=\frac {1}{2}\int e^tdt$$
$$\displaystyle =\frac {1}{2}(e^t)+C$$
$$\displaystyle =\frac {1}{2}e^{(2x+3)}+C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle\int \left(\dfrac{1-x}{1+x}\right)^2dx$$ is equal to?
  • A. $$x-$$ln $$(x+1)+\dfrac{4}{x+1}+c$$
  • B. $$x-4$$ ln $$(x+1)-\dfrac{4}{x+1}+c$$
  • C. $$x+$$ln $$(x+1)-\dfrac{4}{x+1}+c$$
  • D. $$x-4$$ ln $$(x-1)+\dfrac{4}{x+1}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Hard
Find the value of A and B,if $$\int_{}^{} {\frac{{dx}}{{5 + 4\cos x}}}  = A{\tan ^{ - 1}}(B\tan \frac{x}{2}) + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
lf $$\displaystyle \int\frac{2x^{2}+3}{(x^{2}-1)(x^{2}+4)}dx=a\log(\frac{x-1}{x+1})+b\tan^{-1}(\frac{x}{2})+c$$, then values of a and $$b$$ are
  • A. $$(1, -1)$$
  • B. $$(-1,1)$$
  • C. $$\displaystyle (\frac{1}{2},-\frac{1}{2})$$
  • D. $$\displaystyle (\frac{1}{2},\frac{1}{2})$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate the definite integral   $$\displaystyle \int_1^2\frac {5x^2}{x^2+4x+3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Let $$g(x)=\dfrac{1}{2}\left[f(x)-f(-x)\right]$$ for $$-3\le x\le 3$$ and $$f(x)=2x^2-2x+1$$ then find $$\displaystyle\int_{-3}^{3}g(x) dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer