Mathematics

# Integrate the function  $e^{2x+3}$

##### SOLUTION
Put $2x+3=t$
$\therefore 2dx=dt$
$\displaystyle \Rightarrow e^{2x+3}dx=\frac {1}{2}\int e^tdt$
$\displaystyle =\frac {1}{2}(e^t)+C$
$\displaystyle =\frac {1}{2}e^{(2x+3)}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle\int \left(\dfrac{1-x}{1+x}\right)^2dx$ is equal to?
• A. $x-$ln $(x+1)+\dfrac{4}{x+1}+c$
• B. $x-4$ ln $(x+1)-\dfrac{4}{x+1}+c$
• C. $x+$ln $(x+1)-\dfrac{4}{x+1}+c$
• D. $x-4$ ln $(x-1)+\dfrac{4}{x+1}+c$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Find the value of A and B,if $\int_{}^{} {\frac{{dx}}{{5 + 4\cos x}}} = A{\tan ^{ - 1}}(B\tan \frac{x}{2}) + c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
lf $\displaystyle \int\frac{2x^{2}+3}{(x^{2}-1)(x^{2}+4)}dx=a\log(\frac{x-1}{x+1})+b\tan^{-1}(\frac{x}{2})+c$, then values of a and $b$ are
• A. $(1, -1)$
• B. $(-1,1)$
• C. $\displaystyle (\frac{1}{2},-\frac{1}{2})$
• D. $\displaystyle (\frac{1}{2},\frac{1}{2})$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate the definite integral   $\displaystyle \int_1^2\frac {5x^2}{x^2+4x+3}$

Let $g(x)=\dfrac{1}{2}\left[f(x)-f(-x)\right]$ for $-3\le x\le 3$ and $f(x)=2x^2-2x+1$ then find $\displaystyle\int_{-3}^{3}g(x) dx$.