Mathematics

# Integrate the function    $\displaystyle \frac {\cos x}{\sqrt {4-\sin^2x}}$

##### SOLUTION
Let $\sin x=t\Rightarrow \cos x dx=dt$
$\displaystyle \Rightarrow \int \frac {\cos x}{\sqrt {4-\sin^2x}}dx=\int \frac {dt}{\sqrt {(2)^2-(t)^2}}$
$\displaystyle =\sin^{-1}\left (\frac {t}{2}\right )+C$
$\displaystyle =\sin^{-1}\left (\frac {\sin x}{2}\right )+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

#### Realted Questions

Q1 Subjective Medium
Integrate the function  $\cfrac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Find $\displaystyle \int \dfrac {dx}{\sqrt {9 + 8x - x^{2}}}$.

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\int _{ -1 }^{ 3 }{ \left| { x }^{ 2 }-1 \right| dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$For x>0$,let  $f\left( x \right) =\int _{ 1 }^{ 2 }{ \dfrac { \log { t } }{ 1+t } } dt$,then$f\left( x \right) +f\left( \dfrac { 1 }{ x } \right)$is equal to:
• A. $\dfrac { 1 }{ 2 } \left( \log { x } \right) ^{ 2 }$
• B. $\log { x }$
• C. $\dfrac { 1 }{ 4 } \log { { x }^{ 2 } }$
• D. $\dfrac { 1 }{ 4 } \left( \log { x } \right) ^{ 2 }$

Let $\displaystyle 2I_{1}+I_{2}=\int \frac {e^{x}}{e^{2x}+e^{-2x}}dx$  and  $\displaystyle I_{1}+2I_{2}=\int \frac {e^{-x}}{e^{2x}+e^{-2x}}dx$