Mathematics

# Integrate the following function with respect to $x$$\dfrac{(x+1).(x+\log{x})^{4}}{3x}$

##### SOLUTION
According to question,
Let,
$x+logx=t$

$\implies( 1+\dfrac{1}{x})dx=dt$

$\implies( \dfrac{1+x}{x})dx=dt$

Substitute this values, we get

$\int \dfrac{t^4}{3}dt$

$\implies \dfrac{t^5}{3\times5}+C$

$\implies \dfrac{(x+logx)^5}{15}+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Evaluate the integral
$\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{\sin^{\frac{3}{2}x}\ dx}{\sin^{\frac{3}{2}}x+\cos^\frac{3}{2}x}$
• A. $\displaystyle \frac{\pi}{2}$
• B. $\pi$
• C. $0$
• D. $\displaystyle \frac{\pi}{4}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve:
$\int {\dfrac{x}{{{x^2} + x + 1}}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {\sqrt {\dfrac{{1 + x}}{{1 - x}}} }$dx

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve
$\displaystyle \int \dfrac {1}{\sin x(3+2\cos x)}$

$\displaystyle I= \int_{0}^{\pi }\frac{x\tan x}{\sec x+\tan x}dx= \frac{\pi }{C}\left ( \pi -2 \right ).$