Mathematics

# Integrate the following function with respect to $x$$\dfrac{\cos{x}}{1-\sin{x}}$

##### SOLUTION
According to question,
$\displaystyle \int \dfrac{\cos{x}}{1-\sin{x}}dx$
Let, $1-sinx=t$
$\Rightarrow$  $-cosx.dx=dt$
$\Rightarrow$  $\displaystyle \int -\dfrac{1}{t}dt$
$-lnt+C$
$\Rightarrow$  $-ln(1-sinx)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Medium
Evaluate : $\displaystyle\int^{\pi/2}_0\dfrac{\sqrt{\cot x}}{(\sqrt{\tan x}+\sqrt{\cot x})}dx$
• A. $\dfrac{\pi}{2}$
• B. $0$
• C. $1$
• D. $\dfrac{\pi}{4}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
If $\int _{ log2 }^{ x }{ \dfrac { dx }{ \sqrt { { e }^{ x }-1 } } } =\dfrac { \pi }{ 6 } ,$then x is equal to _________.
• A. in 8
• B. in 4
• C. None of these
• D. 4

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\displaystyle \int\cos\{2\tan^{-1}\sqrt{\frac{1-x}{1+x}}\}d{x}=$

• A. $\displaystyle \frac{1}{8}(x^{2}-1)+k$
• B. $\displaystyle \frac{1}{8}(x^{2}+1)+k$
• C. $\displaystyle \frac{x}{2}+k$
• D. $\displaystyle \frac{x^{2}}{2}+k$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int _{ 0 }^{ \pi /4 }{ \log { \left( 1+\tan ^{ 2 }{ \theta } +2\tan { \theta } \right) d\theta = } }$
• A. $\pi \log 2$
• B. $(\pi \log 2)/2$
• C. $\log 2$
• D. $(\pi \log 2)/4$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
$\displaystyle \int {{{\tan }^{ - 1}}} \sqrt {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}} \,dx$, where $\displaystyle 0 < x < \frac{\pi }{2}$. is equal to

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020