Mathematics

# Integrate : $\int\limits_0^1 {x{{\left( {1 - x} \right)}^{91}}}$

##### SOLUTION
Let $t=1-x\Rightarrow\,dt=-dx$

When $x=0\Rightarrow\,t=1$
When $x=1\Rightarrow\,t=0$

$=-\displaystyle\int_{1}^{0}{{t}^{91}\left(1-t\right)dt}$

$=-\displaystyle\int_{1}^{0}{{t}^{91}dt}+\displaystyle\int_{1}^{0}{{t}^{92}dt}$

$=\left[-\dfrac{{t}^{91+1}}{92}+\dfrac{{t}^{92+1}}{93}\right]_{1}^{0}$

$=\left[-\dfrac{{t}^{92}}{92}+\dfrac{{t}^{93}}{93}\right]_{1}^{0}$

$=-\dfrac{1}{92}\left(0-1\right)+\dfrac{1}{93}\left(0-1\right)$

$=\dfrac{1}{92}-\dfrac{1}{93}=\dfrac{93-92}{92\times 93}=\dfrac{1}{8,556‬}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 One Word Hard
$\displaystyle \int \frac{\cos x}{5-3\cos x}dx=-\frac{1}{3}x+\frac{k}{6}\tan ^{-1}\left [ 2\tan \frac{x}{2} \right ].$ Find the value of $k$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \overset{\pi/2}{\underset{0}{\int}}{ \dfrac { \sin ^6x }{ \cos ^{ 6 }{ x } +\sin ^{ 6 }{ x } } }dx$ is equal to:
• A. $0$
• B. $\pi$
• C. $2\pi$
• D. $\dfrac{\pi}{4}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle \int \dfrac{\sqrt{\cos \ 2x}}{\sin \ x} dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integral:
$\int { \left( \sqrt { x } \left( a{ x }^{ 2 }+bx+c \right) \right) } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
Solve $\displaystyle\int \dfrac{x^2}{\sqrt{1-x^6}}dx$.
• A. $\dfrac{1}{3}\cos^{-1}(x^3)+c$
• B. $-\dfrac{1}{3}\sin^{-1}(x^3)+c$
• C. $\dfrac{1}{4}\cos^{-1}(x^3)+c$
• D. $\dfrac{1}{3}\sin^{-1}(x^3)+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020