Mathematics

Integrate $$\int \left | x \right |^{3}\ dx$$


ANSWER

$$\dfrac{x\left | x \right |^{3}}{4}+c$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$$\displaystyle\int_{-1}^{1}|2x+1|\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Primitive of $$\frac{1}{4\sqrt{x}+x}$$ is equal to
  • A. $$2log|1+4\sqrt{x}|+c$$
  • B. $$\frac{1}{2}log|4-\sqrt{x}|+c$$
  • C. $$\frac{1}{2}log|4+\sqrt{x}|+c$$
  • D. $$2log|4+\sqrt{x}|+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Solve: $$\displaystyle \int _{ -1 }^{ 1 }{ \dfrac { 2\sin { x-3{ x }^{ 2 } }  }{ 4-\left| x \right|  } dx= } $$

  • A. $$ -6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4-\left| x \right| } dx } $$
  • B. $$-6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4+\left| x \right| } dx } $$
  • C. $$0$$
  • D. $$ 6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4-\left| x \right| } dx } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
The value of $$\displaystyle \int { { e }^{ 2x } } \left( \frac { 1 }{ x } -\frac { 1 }{ 2{ x }^{ 2 } }  \right) dx$$ is
  • A. $$\displaystyle \frac { { e }^{ 2x } }{ 2 } +c$$
  • B. $$\displaystyle \frac { { e }^{ 2x } }{ 3x } +c$$
  • C. $$\displaystyle \frac { { e }^{ 2x } }{ x } +c$$
  • D. $$\displaystyle \frac { { e }^{ 2x } }{ 2x } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Solve $$\displaystyle \int\sqrt{\dfrac{a-x}{a+x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer