Mathematics

# Integrate $\int \left | x \right |^{3}\ dx$

$\dfrac{x\left | x \right |^{3}}{4}+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\displaystyle\int_{-1}^{1}|2x+1|\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Primitive of $\frac{1}{4\sqrt{x}+x}$ is equal to
• A. $2log|1+4\sqrt{x}|+c$
• B. $\frac{1}{2}log|4-\sqrt{x}|+c$
• C. $\frac{1}{2}log|4+\sqrt{x}|+c$
• D. $2log|4+\sqrt{x}|+c$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Solve: $\displaystyle \int _{ -1 }^{ 1 }{ \dfrac { 2\sin { x-3{ x }^{ 2 } } }{ 4-\left| x \right| } dx= }$

• A. $-6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4-\left| x \right| } dx }$
• B. $-6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4+\left| x \right| } dx }$
• C. $0$
• D. $6\int _{ 0 }^{ 1 }{ \dfrac { { x }^{ 2 } }{ 4-\left| x \right| } dx }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle \int { { e }^{ 2x } } \left( \frac { 1 }{ x } -\frac { 1 }{ 2{ x }^{ 2 } } \right) dx$ is
• A. $\displaystyle \frac { { e }^{ 2x } }{ 2 } +c$
• B. $\displaystyle \frac { { e }^{ 2x } }{ 3x } +c$
• C. $\displaystyle \frac { { e }^{ 2x } }{ x } +c$
• D. $\displaystyle \frac { { e }^{ 2x } }{ 2x } +c$

Solve $\displaystyle \int\sqrt{\dfrac{a-x}{a+x}}dx$