Mathematics

# Integrate $\int {\frac{e^{x-1}+x^{e-1}}{e^{x}+x^e}dx}$.

##### SOLUTION
Let $I=\int { \dfrac { { e }^{ x-1 }+{ x }^{ e-1 } }{ { e }^{ x }+{ x }^{ e } } } dx$
$I=\dfrac { 1 }{ e } \int { \dfrac { { e }^{ x }+{ ex }^{ e-1 } }{ { e }^{ x }+{ x }^{ e } } } dx$
Let $\left( { e }^{ x }+{ x }^{ e } \right) =z$
So,  $\left( { e }^{ x }+{ ex }^{ e-1 } \right) dx=dz$
So,  $I=\dfrac { 1 }{ e } \int { \dfrac { 1 }{ z } dz } =\dfrac { 1 }{ e } log\left| z \right| +C$
$I=\dfrac { 1 }{ e } \log\left| { e }^{ x }+{ x }^{ e } \right| +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\int { \dfrac { { sec }^{ 2 }x }{ { cosec }^{ 2 }x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Medium
Evaluate:
$\displaystyle \int_\limits{0}^{\pi}\frac{x dx}{a^2\cos^2x+ b^2 \sin^2x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The value of the definite integral $\underset{0}{\overset{\pi / 2}{\int}} \dfrac{sin 5x}{sin x} dx$ is :
• A. $\dfrac{\pi}{2}$
• B. $\pi$
• C. $2 \pi$
• D. $0$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following : $\displaystyle\int \dfrac{1}{\sqrt{3x^{2}-8}}.dx$

$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$