Mathematics

# Integrate : $\int {\dfrac{{\cos 2x}}{{1 + {{\sin }^2}x}}dx}$

##### SOLUTION
$I=\displaystyle \int \dfrac {\cos 2x}{1+\sin^2 x}dx=\displaystyle \int \dfrac {\cos 2x}{1+\dfrac {1-\cos 2x}{2}}dx$  [Using $\cos 2x=1-2\sin^2 x]$
$I=-2\displaystyle \int \dfrac {-\cos 2x}{3-\cos 2x }$ [Adding and subtracting both sides]
$I=-2\displaystyle \int \dfrac {(3-\cos 2x)-3}{3-\cos 2x}dx$ [Splitting the fraction]
$I=-2\displaystyle \int 1.dx +6 \displaystyle \int \dfrac {1}{3-\cos 2x}dx$
$I=-2x+6\displaystyle \int \dfrac {1}{3-\dfrac {1-\tan^2 x}{1+\tan^2 x}}dx\quad \left [Using\ relation\ \cos 2x =\dfrac {1-\tan^2x}{1+\tan^2x}\right]$
$I=-2x+6\displaystyle \int \dfrac {\sec^2 x}{2+4\tan^2 x}dx \ [\sec^2x=1+\tan^2 x]$
let $\tan x=t$
Differentiation both sides:-
$\sec^2x\ dx=dt$
Subtracting in the integral:-
$\Rightarrow \ I=-2x+6^3 \displaystyle \int \dfrac {dt}{x(1+2t^2)}$
$=-2x+3 \displaystyle \int \dfrac {dt}{1+(\sqrt 2 t^2)}\quad \left [integral\ of\ from\ \dfrac {1}{1+x^2}\quad \because \displaystyle \int \dfrac {1}{1+x^2}dx=\tan^{-1}x+c \right]$
$=-2x+\dfrac {3}{\sqrt 2}\tan^{-1}(\sqrt 2 t)+c$
$\Rightarrow \ I=-2x+\dfrac {3}{\sqrt 2}\tan^{-1}(\sqrt 2 \tan x)+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Find the value $\displaystyle\int\limits_{-\dfrac{\pi}{2}}^{\dfrac{\pi}{2}} \sin^{2017}x\cos ^{2018}x\ dx$.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate the given integral.
$\displaystyle \int { \tan ^{ -1 }{ \left( \cfrac { 3x-{ x }^{ 3 } }{ 1-3{ x }^{ 2 } } \right) } } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium

If $f(x)=\displaystyle \frac{e^{x}}{1+e^{x}}$ ,$I_{1}=\displaystyle \int_{f(-a)}^{f(a)}xg\{x(1-x)\}dx$ and $I_{2}=\displaystyle \int_{f(-a)}^{f(a)}g\{x(1-x)\}dx$, then the value $\displaystyle \frac{I_{2}}{I_{1}}$ is
• A. -3
• B. -1
• C. 1
• D. 2

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Write the following function w.r.t $x$.
$\dfrac {\cos x}{1-\sin x}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Multiple Correct Medium
The value of $\displaystyle \int_{0}^{1} \dfrac{2 x^{2}+3 x+3}{(x+1)\left(x^{2}+2 x+2\right)} d x$ is
• A. $\dfrac{\pi}{4}+2 \log 2-\tan ^{-1} \dfrac{1}{3}$
• B. $\dfrac{\pi}{4}+2 \log 2-\tan ^{-1} 2$
• C. $2 \log 2-\cot ^{-1} 3$
• D. $-\dfrac{\pi}{4}+\log 4+\cot ^{-1} 2$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020