Mathematics

# Integrate :$\int {\cfrac{{6\sin \left( x \right)co{s^2}\left( x \right) + sin\left( {2x} \right) - 23\sin \left( x \right)}}{{{{\left( {\cos \left( x \right) - 1} \right)}^2}\left( {5 - {{\sin }^2}\left( x \right)} \right)}}dx}$

##### SOLUTION
$\displaystyle =\int\dfrac{6\sin X \cos^2 X+2\sin X\cos X-23\sin X}{(\cos X-1)^2(4+\cos^2X)}$

$\displaystyle =\int\dfrac{6\cos^2 X+2\cos X-23}{(t-1)^2(4+t)^2}X-dt(\sin X)$
i.e, $\cos\,x=t\Rightarrow -\sin\,xdx=dt$ {substitution}

$\displaystyle \int-\dfrac{-(6t^2+2t-23)dt}{(t-1)^2(4+t^2)}dt$

$\displaystyle \int\dfrac{23-2t-6t^2}{(t-1)^2(4+t)^2}$

$\Rightarrow \boxed{\dfrac{23-2t-6t^2}{(t-1)^2(4+t)^2}=\dfrac{At+B}{4+t^2}+\dfrac{C}{t-1}+\dfrac{D}{(t-1)^2}}$

By solving we get $D=3;A=4;B=-5;C=-4$

$\displaystyle \int\Rightarrow \dfrac{4t-5dt}{4+t^2}+\int\dfrac{-4}{t-1}dt+\dfrac{3}{(t-1)^2}dt$

$\displaystyle \int\dfrac{4t}{4+t^2}dt-\int\dfrac{5}{4+t^2}dt-4\log(t-1)$

$=2\log(4+t^2)-4\log(t-1)+\dfrac{3}{t-1}+C$

$=2\log(4+t^2)-4\log(t-1)+\dfrac{3}{t-1}$

$=-\dfrac{5t}{2}\tan^{-1}\left(\dfrac{t}{2}\right)+C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
$\int {{e^x}\left( {\cos x - \sin x} \right)dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate
$\displaystyle \int \dfrac{\sin x}{\sin (x-a)}dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Integrate: $\int \dfrac{1}{x(x^n+1)}\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\underset{n - 1}{\overset{100}{\sum}} \underset{n - 1}{\overset{n}{\int}} \, e^{x - [x]} dx$ =
• A. $\dfrac{e - 1}{100}$
• B. $100 (e - 1)$
• C. $\dfrac{e^{100} - 1}{100}$
• D. $\dfrac{e^{100} - 1}{e - 1}$

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$