Mathematics

# Integrate $\int (1+y^{2})dx$

##### SOLUTION
$\int{\left( 1 + {y}^{2} \right) \; dx}$
Since the integration is w.r.t. $x$, thus the $\left( 1 + {y}^{2} \right)$ is constant here.
Therefore,
$\int{\left( 1 + {y}^{2} \right) \; dx}$
$= \left( 1 + {y}^{2} \right) \int{dx}$
$= \left( 1 + {y}^{2} \right) x + C$
Thus,
$\int{\left( 1 + {y}^{2} \right) \; dx} = \left( 1 + {y}^{2} \right) x + C$
Hence the correct answer is $\left( 1 + {y}^{2} \right) x + C$.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
Find the value of c given $\displaystyle \int_2^8$ $x^4$ dx = $\displaystyle \lim_{x\to\infty}$ $\sum_{k=1}^{n}$ $($2$+\dfrac {ck}{n})^4$
• A. $2$
• B. $4$
• C. $8$
• D. $6$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Solve :

$\int _{ 0 }^{ \frac{1}{2} }{ \dfrac { x\sin ^{ -1 }{ x } }{ \sqrt { 1-{ x }^{ 2 } } } dx},(x\not=1)$
• A. $\dfrac { 1 }{ 2 } +\dfrac { \sqrt { 3 } \pi }{ 12 }$
• B. $\dfrac { -1 }{ 2 } +\dfrac { \sqrt { 3 }\pi }{ 12 }$
• C. None of these
• D. $\dfrac { 1 }{ 2 } -\dfrac { \sqrt { 3 } \pi }{ 12 }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate the following function with respect to $x$
$\dfrac{1}{\sin{x}-\cos{x}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Integrate the following w.r.t.$x:\dfrac{3x^3-2x+5}{x\sqrt{x}}$

Evaluate :$\displaystyle \int \dfrac{dx}{x(x^2+1)}$