Mathematics

# Integrate:$\int _{ 0 }^{ \infty }{ \dfrac { x\tan ^{ -1 }{ x } }{ { (1+{ x }^{ 2 }) }^{ 2 } } } dx$ equals ?

$\pi/8$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Single Correct Medium
The value of $\displaystyle \int \frac{e^x}{x+ 2} \{ 1 + (x + 2) log (x+ 2) \} dx$ is
• A. $\displaystyle \frac{e^x}{x + 2} + c$
• B. $e^x(x+ 2) + c$
• C. $e^x (x- 2) +c$
• D. $e^x log (x + 2)$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int { \frac { dx }{ \sqrt { x } -\sqrt { x-1 } } }$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Let $f(x)=\displaystyle \int_{-2}^{x} e^{(1+t)^2}dt$ and $g(x)=f(h(x)),$ where h(x) is defined for all $x \in R.$ If $g'(2)=e^4$ and $h'(2)=1.$ Then, absolute value of sum for all possible value of h(2), is ...

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\displaystyle \int_{0}^{5}(2-x)dx$

$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$