Mathematics

Integrate $$\displaystyle\int \dfrac{x^3-1}{x^2}$$


SOLUTION
$$\int { \cfrac { { x }^{ 3 }-1 }{ { x }^{ 2 } }  } =\int { x-{ x }^{ -2 } } $$
$$=\int { x } -\int { { x }^{ -2 } } $$
$$=\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { x-1 }{ -1 } $$
$$=\cfrac { { x }^{ 2 } }{ 2 } +\cfrac { 1 }{ x } $$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
Evaluate the given integral.
$$\displaystyle\int { \cfrac { \cos { 2x } -1 }{ \cos { 2x } +1 }  } dx$$
  • A. $$\tan { x } -x+C$$
  • B. $$x+\tan { x } +C$$
  • C. $$-x-\cot { x } +C$$
  • D. $$x-\tan { x } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium

lf $$\displaystyle \int_{0}^{\pi/{2}}\log(\sin \mathrm{x})\mathrm{d}\mathrm{x}=\mathrm{k}$$ then $$\displaystyle \int_{0}^{\pi/{2}}\log(\cos x)d{x}$$
  • A. $$\dfrac{k}{2}$$
  • B. $$2k$$
  • C. $$-3k$$
  • D. $$k$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard

$$\displaystyle \int_{0}^{\pi /4}x\tan^{4}xdx=$$
  • A. $$\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{12}-\dfrac{1}{6}$$
  • B. $$\dfrac{2}{3}\ln2-\dfrac{\pi^{2}}{32}+\dfrac{\pi}{12}+\dfrac{1}{6}$$
  • C. $$\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{12}-+\dfrac{1}{6}$$
  • D. $$\dfrac{2}{3}\ln2+\dfrac{\pi^{2}}{32}-\dfrac{\pi}{6}-\dfrac{1}{6}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 One Word Medium
Let $$T=\int_0^{\ln2}\dfrac{2e^{3x}+ 3e^{2x}-6e^x}{6(e^{3x}+e^{2x}-e^x+1)}dx,$$ then $$e^T=\frac{p}{q}$$ where p and q are coprime to each other, then the value of $$p+ q$$ is

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int { (\cfrac { { 2 }^{ x }-5^{ x } }{ 10^{ x } } )dx } $$ is equal to __________________.
  • A. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • B. $$\cfrac { { 2 }^{ x } }{ \log _{ e }{ 2 } } +\cfrac { 5^{ x } }{ \log _{ e }{ 5 } } +c$$
  • C. $$\cfrac { { 5 }^{ -x } }{ \log _{ e }{ 5 } } -\cfrac { 2^{ -x } }{ \log _{ e }{ 2 } } +c$$
  • D. $$\cfrac { { 2 }^{ -x } }{ \log _{ e }{ 2 } } -\cfrac { 5^{ -x } }{ \log _{ e }{ 5 } } +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer