Mathematics

# Integrate $\displaystyle\int \dfrac {6x}{3x^2+8}dx$

##### SOLUTION
Consider, $I=\displaystyle\int \dfrac {6x}{3x^2+8}dx$

Let $t=3x^2+8 \implies dt=6xdx$

$\Rightarrow I= \displaystyle \int \dfrac 1{t}dt$

$=\log t$

$=\log 3x^2+8$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Hard
$\int { \cfrac { 3{ x }^{ 5 } }{ \left( 1+{ x }^{ 12 } \right) } } dx=$?
• A. $\tan ^{ -1 }{ { x }^{ 6 } } +C$
• B. $\cfrac { 1 }{ 4 } \tan ^{ -1 }{ { x }^{ 6 } } +C$
• C. none of these
• D. $\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 6 } } +C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Solve $\int {\dfrac{dx}{\sqrt{x-x^2}}dx}$ .
• A. $I={{\cos }^{-1}}\left( 2x-1 \right)+C$
• B. $I={{\sin }^{-1}}\left( x-1 \right)+C$
• C. None of these
• D. $I={{\sin }^{-1}}\left( 2x-1 \right)+C$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
The value of $\displaystyle \int_{0}^{1} \dfrac{8log(1+x)}{1+x^2}dx$ is
• A. $\dfrac{\pi}{8}log2$
• B. $\dfrac{\pi}{2}log2$
• C. $log2$
• D. $\pi log2$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate : $\displaystyle {\int}^{2\pi}_0 \dfrac{1}{1+e^{\sin x}}$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\int _{ -1 }^{ 1 }{ \sqrt { \left( \dfrac { x+2 }{ x-2 } \right) ^{ 2 }+\left( \dfrac { x-2 }{ x+2 } \right) ^{ 2 } } -2dx }$
• A. $8ln\dfrac {3}{4}$
• B. $4ln\dfrac {4}{3}$
• C. $0$
• D. $8ln\dfrac {4}{3}$