Mathematics

Integrate $$\displaystyle\int \dfrac {6x}{3x^2+8}dx$$


SOLUTION
Consider, $$I=\displaystyle\int \dfrac {6x}{3x^2+8}dx$$

Let $$t=3x^2+8 \implies dt=6xdx$$

$$\Rightarrow I= \displaystyle \int \dfrac 1{t}dt $$

$$=\log t$$

$$=\log 3x^2+8$$ 

View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\int { \cfrac { 3{ x }^{ 5 } }{ \left( 1+{ x }^{ 12 } \right)  }  } dx=$$?
  • A. $$\tan ^{ -1 }{ { x }^{ 6 } } +C$$
  • B. $$\cfrac { 1 }{ 4 } \tan ^{ -1 }{ { x }^{ 6 } } +C$$
  • C. none of these
  • D. $$\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 6 } } +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Solve $$\int {\dfrac{dx}{\sqrt{x-x^2}}dx}$$ .
  • A. $$ I={{\cos }^{-1}}\left( 2x-1 \right)+C $$
  • B. $$ I={{\sin }^{-1}}\left( x-1 \right)+C $$
  • C. None of these
  • D. $$ I={{\sin }^{-1}}\left( 2x-1 \right)+C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The value of $$\displaystyle \int_{0}^{1} \dfrac{8log(1+x)}{1+x^2}dx$$ is 
  • A. $$\dfrac{\pi}{8}log2$$
  • B. $$\dfrac{\pi}{2}log2$$
  • C. $$log2$$
  • D. $$\pi log2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate : $$\displaystyle {\int}^{2\pi}_0 \dfrac{1}{1+e^{\sin x}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int _{ -1 }^{ 1 }{ \sqrt { \left( \dfrac { x+2 }{ x-2 }  \right) ^{ 2 }+\left( \dfrac { x-2 }{ x+2 }  \right) ^{ 2 } } -2dx } $$
  • A. $$8ln\dfrac {3}{4}$$
  • B. $$4ln\dfrac {4}{3}$$
  • C. $$0$$
  • D. $$8ln\dfrac {4}{3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer