Mathematics

# Integrate $\displaystyle \int { \dfrac { { \sec }^{ 2 }x }{ \tan x } } dx$

##### SOLUTION
$\int { \dfrac { { \sec }^{ 2 }x }{ tanx } } dx$
Let $tanx=t$
$\dfrac { dt }{ dx } ={ \sec }^{ 2 }x$
$dt={ \sec }^{ 2 }xdx$
$\int { \dfrac { dt }{ t } } =lnt+C$
$=ln\left| tanx \right| +C$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
Solve:$\displaystyle \int_0^{\dfrac{\pi}{2}}x^2\cos^2xdx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of $\int _{-\pi /2}^{\pi /2}\left (psin^3 x+qsin^4 x +r sin^5 x \right )$ does not depend on

• A. p, q, r
• B. p only
• C. q, r only
• D. p, r only

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int {\frac{\sec ^2xdx}{2\tan x+5}}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int \frac {dx}{ ( \sqrt {x +3} - \sqrt { x+2} )}$

The value of integral $\int _{ -1 }^{ 3 }{ \left( \tan ^{ -1 }{ \left( \dfrac { x }{ 1+{ x }^{ 2 } } \right) } +\tan ^{ -1 }{ \left( \dfrac { { x }^{ 2 }+1 }{ x } \right) } \right) dx }$