Mathematics

# Integrate $\dfrac{\tan^4 \sqrt x+ \sec^2 \sqrt x}{\sqrt x}$The solution is $\dfrac {2\tan ^3(\sqrt x)}{m}-2\tan \sqrt x+2\sqrt x+2\tan \sqrt x+C$.Find m

3

##### SOLUTION

$let\sqrt x=t\\then(\frac{1}{2\sqrt x})dx=dt\\\therefore I=2\int(tan^4t+sec^2t)dt\\=2\int[tan^2t(sec^2t-1)+sec^2t]dt\\=2\int tan^2t sec^2t dt-2\int tan^2t dt+2\int sec^2t dt \\=2(\frac{tan^3t}{3})-2\int(sec^2t-1)dt+2tant+c\\=(\frac{2}{3})tan^3t-2tant+2t+2tant+c \\= (\frac{2}{3})tan^3t-4tant +2t+c\\=(\frac{2}{3})tan^3t(\sqrt x)-2tan\sqrt x + 2tan\sqrt x +2\sqrt x+c\\\therefore m=3$

Its FREE, you're just one step away

One Word Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Prove that $\displaystyle\int^{\pi/2}_0\dfrac{dx}{(1+\sqrt{\tan x})}=\dfrac{\pi}{4}$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
Evaluate $\displaystyle\int\limits_0^\pi {\dfrac{{x\sin x}}{{1 + {{\cos }^2}x}}dx}$
• A. $\dfrac{3\pi}{4}$
• B. $\dfrac{\pi}{4}$
• C. $\dfrac{5\pi}{4}$
• D. $-\dfrac{\pi}{4}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate $\displaystyle \int {\dfrac {y(1+y)}{1-y}}dy$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the following integrals:
$\displaystyle \int { \cfrac { 1 }{ \sqrt { 16-6x-{ x }^{ 2 } } } } dx$

$\int \frac{1}{1+x}\;dx$