Mathematics

Integral of $$f(x)=\sqrt{(1+x^{2})}$$ with respect to $$x^{3}$$ is 


ANSWER

$$\dfrac{2}{3}\dfrac{(1+x^{2})^{3/2}}{x}+k$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle\int {\dfrac{{{\text{ln}}\left( {{\text{e}}{{\text{x}}^{\text{x}}}} \right)}}{{{\text{x}}{{\text{e}}^{\text{x}}}{{\left( {{\text{lnx}}} \right)}^{\text{2}}}}}} {\text{dx}}\;{\text{is}}$$
  • A. $$\dfrac{{\text{1}}}{{{{\text{e}}^{\text{x}}}{\text{lnx}}}}{\text{ + c}}$$
  • B. $$\dfrac{{{e^2}}}{{{{\text{e}}^{\text{x}}}{\text{lnx}}}}{\text{ + c}}$$
  • C. $$ - \dfrac{1}{{{{\text{e}}^{{\text{ - x}}}}{\text{lnx}}}}{\text{ + c}}$$
  • D. $$ - \dfrac{1}{{{{\text{e}}^{\text{x}}}{\text{lnx}}}}{\text{ + c}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium

$$\displaystyle \int_{0}^{1}\frac{\sqrt{x}}{1+x}dx_{=}$$
  • A. $$1-\pi/2$$
  • B. $$\pi/2$$
  • C. $$2+\pi/2$$
  • D. $$2-\pi/2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Hard
Evaluate the given integral.
$$\displaystyle \int { \tan ^{ -1 }{ \left( \cfrac { 2x }{ 1-{ x }^{ 2 } }  \right)  }  } dx\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
$$I = \int \sqrt{\frac{a+x}{a-x}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate: $$\displaystyle \overset{\pi/2}{\underset{0}{\int}} \sin x\cdot \sin 2x \,\,dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer