Mathematics

# Integral of $f ( x ) = \sqrt { 1 + x ^ { 2 } }$ with respect to $x ^ { 2 }$ is

$\frac { 2 } { 3 } \left( 1 + x ^ { 2 } \right) ^ { 3 / 2 } + k$

##### SOLUTION
$f(x)=\sqrt{1+x^2}$

$\int \sqrt{1+x^2} dx^2$

$=\dfrac{(1+x^2)^{\frac{3}{2}}}{\frac{3}{2}}$

$=\dfrac{2}{3}(1+x^2)^{\frac{3}{2}}+k$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Hard
$\int _{ 0 }^{ \pi /4 }{ \frac { (sinx+cosx) }{ 9+16sin2x } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate the following integral:
$\displaystyle \int { \cfrac { { e }^{ x } }{ \sqrt { 16-{ e }^{ 2x } } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\int { f\left( x \right) dx=\Psi \left( x \right) }$, then $\int { { x }^{ 5 }f\left( { x }^{ 3 } \right) } dx$ is equal to:
• A. $\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -3\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx+C$
• B. $\dfrac { 1 }{ 4 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx+C$
• C. $\dfrac { 1 }{ 3 } \left[ { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx \right] +C$
• D. $\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx +C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Let g be continuous function on R such that $\int g(x)\mathrm{d} x=f(x)+C$, where C is constant of integration. If f(x) is an odd function, $f(1)=3$ and $\int_{-1}^{1}f^{2}(x)g(x)\mathrm{d} x=\lambda$, then $\frac{\lambda }{2}$ is equal to
• A. 10
• B. 11
• C. 12
• D. 9

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$