Mathematics

Integral of $$f ( x ) = \sqrt { 1 + x ^ { 2 } }$$ with respect to $$x ^ { 2 }$$ is


ANSWER

$$\frac { 2 } { 3 } \left( 1 + x ^ { 2 } \right) ^ { 3 / 2 } + k$$


SOLUTION
$$f(x)=\sqrt{1+x^2}$$

$$\int \sqrt{1+x^2} dx^2$$

$$=\dfrac{(1+x^2)^{\frac{3}{2}}}{\frac{3}{2}}$$

$$=\dfrac{2}{3}(1+x^2)^{\frac{3}{2}}+k$$
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
$$\int _{ 0 }^{ \pi /4 }{ \frac { (sinx+cosx) }{ 9+16sin2x }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following integral:
$$\displaystyle \int { \cfrac { { e }^{ x } }{ \sqrt { 16-{ e }^{ 2x } }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
If $$\int { f\left( x \right) dx=\Psi \left( x \right)  }$$, then $$\int { { x }^{ 5 }f\left( { x }^{ 3 } \right)  } dx$$ is equal to:
  • A. $$\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -3\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx+C$$
  • B. $$\dfrac { 1 }{ 4 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx+C$$
  • C. $$\dfrac { 1 }{ 3 } \left[ { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 3 } } \Psi \left( { x }^{ 3 } \right) dx \right] +C$$
  • D. $$\dfrac { 1 }{ 3 } { x }^{ 3 }\Psi \left( { x }^{ 3 } \right) -\int { { x }^{ 2 } } \Psi \left( { x }^{ 3 } \right) dx  +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Let g be continuous function on R such that $$\int g(x)\mathrm{d} x=f(x)+C$$, where C is constant of integration. If f(x) is an odd function, $$f(1)=3$$ and $$\int_{-1}^{1}f^{2}(x)g(x)\mathrm{d} x=\lambda $$, then $$\frac{\lambda }{2}$$ is equal to
  • A. 10
  • B. 11
  • C. 12
  • D. 9

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer