Mathematics

$$\int\dfrac{x+\sqrt[3]{x^{2}}+\sqrt[6]{x}}{x\left(1+\sqrt[3]{x}\right)}dx$$ is equal to;


ANSWER

$$\dfrac{3}{2}x^{2/3}+6\tan^{-1}x^{1/6}+C$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
$$\displaystyle \int_{-\pi}^{\pi} \dfrac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$$ is equal to
  • A. $$\pi$$
  • B. $$0$$
  • C. None of these
  • D. $$\pi^{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Find the integrals of the functions    $$\tan^4x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
If $$\displaystyle\int { \sin ^{ -1 }{ x } \cos ^{ -1 }{ x } dx } =f^{ -1 }\left( x \right)  \left[ \dfrac { \pi  }{ 2 } x-xf^{ -1 }\left( x \right) -2\sqrt { 1-{ x }^{ 2 } }  \right] \dfrac { \pi  }{ 2 } \sqrt { 1-{ x }^{ 2 } } +2x+C$$, then
  • A. $$f\left( x \right) =\cos { x } $$
  • B. $$f\left( x \right) =\tan { x } $$
  • C. None of these
  • D. $$f\left( x \right) =\sin { x } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
The value of $$\displaystyle \int{ \sqrt{\dfrac{e^x - 1}{e^x + 1}}dx}$$ is equal to
  • A. $$ln (e^x + \sqrt{e^{2x} - 1} - sec^{-1} (e^x) + C$$
  • B. $$ln ( e^x - \sqrt{e^{2x} - 1} - sec^{-1} (e^x) + C$$
  • C. none of these
  • D. $$ln (e^x + \sqrt{e^{2x} - 1} + sin^{-1} (e^x) + C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Find $$\int{\dfrac{1}{\sin x\cos^{3}x}dx}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer