Mathematics

$\int\dfrac{x+\sqrt[3]{x^{2}}+\sqrt[6]{x}}{x\left(1+\sqrt[3]{x}\right)}dx$ is equal to;

ANSWER

$\dfrac{3}{2}x^{2/3}+6\tan^{-1}x^{1/6}+C$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Single Correct Hard
$\displaystyle \int_{-\pi}^{\pi} \dfrac{2 x(1+\sin x)}{1+\cos ^{2} x} d x$ is equal to
• A. $\pi$
• B. $0$
• C. None of these
• D. $\pi^{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find the integrals of the functions    $\tan^4x$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\displaystyle\int { \sin ^{ -1 }{ x } \cos ^{ -1 }{ x } dx } =f^{ -1 }\left( x \right) \left[ \dfrac { \pi }{ 2 } x-xf^{ -1 }\left( x \right) -2\sqrt { 1-{ x }^{ 2 } } \right] \dfrac { \pi }{ 2 } \sqrt { 1-{ x }^{ 2 } } +2x+C$, then
• A. $f\left( x \right) =\cos { x }$
• B. $f\left( x \right) =\tan { x }$
• C. None of these
• D. $f\left( x \right) =\sin { x }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
The value of $\displaystyle \int{ \sqrt{\dfrac{e^x - 1}{e^x + 1}}dx}$ is equal to
• A. $ln (e^x + \sqrt{e^{2x} - 1} - sec^{-1} (e^x) + C$
• B. $ln ( e^x - \sqrt{e^{2x} - 1} - sec^{-1} (e^x) + C$
• C. none of these
• D. $ln (e^x + \sqrt{e^{2x} - 1} + sin^{-1} (e^x) + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Find $\int{\dfrac{1}{\sin x\cos^{3}x}dx}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020