Mathematics

$$\int^{7}_{3}\sqrt {\dfrac {7-x}{x-3}}dx$$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
The value of $$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{\left ( x+1 \right )\sqrt{x^{2}+2x}}$$ is
  • A. $$\pi /6$$
  • B. $$\pi /2$$
  • C. $$\pi $$
  • D. $$\pi /3$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\int\displaystyle\frac{x^2+1}{x^4+1}dx$$ is equal to.
  • A. $$\displaystyle\frac{1}{\sqrt 2}\tan^{-1}\left(\displaystyle\frac{x^2}{\sqrt 2 x}\right)+c$$
  • B. $$\displaystyle\frac{1}{\sqrt 2}\tan^{-1}\left(\displaystyle\frac{x^2+1}{x}\right)+c$$
  • C. $$\displaystyle\tan^{-1}\left(\displaystyle\frac{x^2-1}{\sqrt 2 x}\right)+c$$
  • D. $$\displaystyle\frac{1}{\sqrt 2}\tan^{-1}\left(\displaystyle\frac{x^2-1}{\sqrt 2 x}\right)+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\int x^{3}\, \sin(x^{2}) dx$$
  • A. $$-\displaystyle\frac { 1 }{ 2 } \left( \sin { \left( { x }^{ 2 } \right) -{ x }^{ 2 }\cos { \left( { x }^{ 2 } \right)  }  }  \right) +c$$
  • B. $$\displaystyle\frac { 1 }{ 2 } \left( \sin { \left( { x }^{ 2 } \right) +{ x }^{ 2 }\cos { \left( { x }^{ 2 } \right)  }  }  \right) +c$$
  • C. $$\displaystyle \frac{1}{2}\, x^{2}\, \cos(x^{2}) + \sin(x^{2}) + c$$
  • D. $$\displaystyle\frac { 1 }{ 2 } \left( \sin { \left( { x }^{ 2 } \right) -{ x }^{ 2 }\cos { \left( { x }^{ 2 } \right)  }  }  \right) +c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate: $$\displaystyle \int _{\pi/6}^{\pi/3}\dfrac{\sin{x}+\cos{x}}{\sqrt{\sin{2x}}}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Let $$\displaystyle f\left ( x \right )=\frac{\sin 2x \cdot \sin \left ( \dfrac{\pi }{2}\cos x \right )}{2x-\pi }$$

Then answer the following question.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer