Mathematics

# $\int^{4}_{1}\left(x^{2}-x\right)dx$

##### SOLUTION
$\int_{1} ^{4}(x^2 - x)dx = \left[\dfrac{x^3}{3} - \dfrac{x^2}{2} \right]_{1} ^{4}$

$= \left(\dfrac{4^3}{3} - \dfrac{4^2}{2} \right) - \left( \dfrac{1^3}{3} - \dfrac{1^2}{2} \right)$

$= \left(\dfrac{64}{3} - \dfrac{16}{2} \right) - \left( \dfrac{1}{3} - \dfrac{1}{2} \right)$

$= \dfrac{40}{3} - \dfrac{1}{6}$

$= \dfrac{79}{6}$ (Ans)

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Evaluate $\int \dfrac{\sec^2 x}{3+\tan x}dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate: $\displaystyle \int _{ -a }^{ a }{ \frac { \sqrt { a-x } }{ \sqrt { a+x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Find the number of values of $x$ satisfing $\int _{ 0 }^{ x }{ { t }^{ 2 }\sin { \left( x-t \right) } dt={ x }^{ 2 } }$in $\left[ 0,100 \right]$y

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Show that $\displaystyle \int \frac{\sin \alpha }{\sqrt{\left ( 1+\cos \alpha \right )}}d\alpha =-2\sqrt{2}\cos \frac{\alpha }{2}$

Let $g(x)=\dfrac{1}{2}\left[f(x)-f(-x)\right]$ for $-3\le x\le 3$ and $f(x)=2x^2-2x+1$ then find $\displaystyle\int_{-3}^{3}g(x) dx$.