Mathematics

$$\int(2x^2-3 \, sin x+5 \sqrt{x})dx$$


SOLUTION
$$\quad \int { \left( 2{ x }^{ 2 }-3\sin { x } +5\sqrt { x }  \right) dx } \\ =\frac { 2{ x }^{ 3 } }{ 3 } +3\cos { x } +\frac { 5{ x }^{ \frac { 3 }{ 2 }  } }{ \frac { 3 }{ 2 }  } +C\\ =\frac { 2{ x }^{ 3 } }{ 3 } +3\cos { x } +\frac { 10{ x }^{ \frac { 3 }{ 2 }  } }{ 3 } +C$$
View Full Answer

Its FREE, you're just one step away


Subjective Easy Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Find the value of $$\displaystyle \int_{0}^{(\pi/2)^{1/3}} x^{5}.\sin x^{3}\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Evaluate: $$\displaystyle \int \frac{(x^2 - 1)dx}{x^3(\sqrt{2x^4 - 2x^2 + 1})}$$
  • A. $$\sqrt{2 - \dfrac{2}{x^2} + \dfrac{1}{x^4}} + c$$
  • B. $$2\sqrt{2 - \dfrac{2}{x^2} + \dfrac{1}{x^4}} + c$$
  • C. None of these
  • D. $$\dfrac{1}{2} \sqrt{2 - \dfrac{2}{x^2} + \dfrac{1}{x^4}} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\displaystyle \int { \cfrac { 1 }{ \sqrt { x+3 } -\sqrt { x }  }  } dx$$
  • A. $$\cfrac{2}{3}{(x+2)}^{3/2}+\cfrac{2}{3}x^{3/2}$$
  • B. $$\cfrac{2}{9}{(x+3)}^{3/2}+\cfrac{2}{9}x$$
  • C. $$\cfrac{2}{9}{(x+2)}^{1/2}+\cfrac{2}{9}x^{1/2}$$
  • D. $$\cfrac{2}{9}{(x+3)}^{3/2}+\cfrac{2}{9}x^{3/2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
What is $$\int _{ -\frac{\pi}{2} }^{ \frac{\pi}{2}}{ |\sin x| } dx $$ equal to ?
  • A. 1
  • B. $$\pi$$
  • C.
  • D. 2

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Hard
Let us consider the integral of the following forms
$$f{(x_1,\sqrt{mx^2+nx+p})}^{\tfrac{1}{2}}$$
Case I If $$m>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm x\sqrt{m}$$
Case II If $$p>0$$, then put $$\sqrt{mx^2+nx+C}=u\pm \sqrt{p}$$
Case III If quadratic equation $$mx^2+nx+p=0$$ has real roots $$\alpha$$ and $$\beta$$, then put $$\sqrt{mx^2+nx+p}=(x-\alpha)u\:or\:(x-\beta)u$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer