Mathematics

# $\int {{x^x}\ln \left( {x} \right)dx} =$

${x^x} + c$

##### SOLUTION
Put $t=x^{x}\implies \ln t =x\ln x\implies \dfrac{d{t}}{t}=(1+\ln x)d{x}\implies d{t}=x^{x}(1+\ln x)d{x}$
$\displaystyle\int x^{x}(\ln x+1)d{x}=\int d{t}=t+c=x^{x}+c$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int_{2}^{3}\frac{\left ( x+2 \right )^{2}}{2x^{2}-10x+53}dx$ is equal to
• A. 2
• B. 1
• C. 5/2
• D. 1/2

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Solve $\int x ^ { 2 } \cos x dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int {\frac{x^2}{(x\,\sin\,x+\cos\,x)^2}} dx$ is equal to
• A. $\displaystyle \frac{\sin\,x+\cos\,x}{x\,\sin\,x+\cos\,x}+C$
• B. $\displaystyle \frac{x\,\sin\,x-\cos\,x}{x\,\sin\,x+\cos\,x}+C$
• C. None of these
• D. $\displaystyle \frac{\sin\,x-x\,\cos\,x}{x\,\sin\,x+\cos\,x}+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
Evaluate: $\displaystyle \int_{0}^{1}\dfrac{1-x}{1+x}\cdot \dfrac{dx}{\sqrt{x+x^{2}+x^{3}}}$
• A. $\displaystyle \frac{\pi }{8}$
• B. $\displaystyle \frac{\pi }{4}$
• C. $\displaystyle \frac{\pi }{2}$
• D. $\displaystyle \frac{\pi }{3}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Let $n \space\epsilon \space N$ & the A.M., G.M., H.M. & the root mean square of $n$ numbers $2n+1, 2n+2, ...,$ up to $n^{th}$ number are $A_{n}$, $G_{n}$, $H_{n}$ and $R_{n}$ respectively.
On the basis of above information answer the following questions

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020