Mathematics

# $\int x.log(x+1)dx$

##### SOLUTION
Consider the given integral.
$I=\displaystyle \int x.log(x+1)dx$
$I=log(x+1) .\dfrac{x^2}{2}-\int \dfrac{1}{(x+1)}\dfrac{x^2}{2}dx$
$I=log(x+1) .\dfrac{x^2}{2}-\int \dfrac{1}{(x+1)}\dfrac{(x^2-1+1)}{2}dx$
$I=log(x+1) .\dfrac{x^2}{2}-\dfrac{1}{2} \displaystyle \int \left[ (x-1)+\dfrac{1}{x+1}\right] dx$
$I=log(x+1) .\dfrac{x^2}{2}-\dfrac{1}{2} \left[ \dfrac{x^2}{2}-x+log(x+1)\right]+C$
where $c$ is the constant of integration.

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
The value of $\int (x\ e^{\ell n \sin x}-\cos x)dx$ is equal to:
• A. $x \cos x+C$
• B. $\sin x-x\ \cos +C$
• C. $\sin x+x \cos x+C$
• D. $-e^{\ell n x}\cos x+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Find: $\displaystyle \int {e^{y}(y^2+2y)} d y$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate:
$\displaystyle\int e^{x \,cosec \,x}\left[\dfrac{\sin x - x\cos x}{\sin^2 x}\right]dx$
• A. $e^x . cosec \,x + C$
• B. $-e^{x \,cosec x} + C$
• C. $e^{x \sin} + C$
• D. $e^{x \,cosec x} + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve: $\int\dfrac{1}{(\sin x-2 \cos x)(2\sin x+\cos x)}dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
lf $f(x)dx =g(x) +c$, then $\displaystyle \int f^{-1}(x)dx$ is equal to
• A. $xf^{-1}(x) +c$
• B. $f[g^{-1}(x)]+c$
• C. $g^{-1}(x) +c$
• D. $x f^{-1}(x)-g[f^{-1}(x)]+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020