Mathematics

$$\int { x\left( \dfrac { \sec { 2x } -1 }{ \sec { 2x } +1 }  \right) dx } $$


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium

$$\displaystyle \int_{0}^{\pi /2}x^{2}.\sin x   dx=$$
  • A. 2 $$\pi$$
  • B. $$\pi/2$$
  • C. $$\pi+1$$
  • D. $$\pi-2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
If $$f(x)=\dfrac{\sin x}{x} \forall x \in(0, \pi],$$ prove that$$\dfrac{\pi}{2} \int_{0}^{\pi / 2} f(x) f\left(\dfrac{\pi}{2}-x\right) d x=\int_{0}^{\pi} f(x) d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
Evaluate $$\displaystyle \int\frac{\log(x/e)}{(\log x)^{2}}dx$$
  • A. $$\displaystyle \frac{\log x}{x}+c$$
  • B. $$^{\dfrac{x}{log(x)^{2}}+c} $$
  • C. $$\displaystyle \frac{(\log x)^{2}}{x}+c$$
  • D. $$ \displaystyle \frac{x}{\log x}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium

Evaluate $$\displaystyle \int x\frac{(\sec 2x-1)}{(\sec 2x+1)}dx$$
  • A. $$x \tan x-\log |\displaystyle \sec x|+\frac{x^{2}}{2}+c$$
  • B. $$x \tan x-\log |\sec\frac{x}{2}|+c$$
  • C. $$x \tan x-\log |\displaystyle \sec\frac{x}{2}|+\frac{x^{2}}{2}+c$$
  • D. $$x \tan x-\log |\displaystyle \sec x|-\frac{x^{2}}{2}+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
For the next two (02) items that follow :
Consider the integrals $$I_1=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\frac{dx}{1+\sqrt{tan x}}$$ and $$I_2=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{sin x}dx}{\sqrt{sin }x+\sqrt{cos}x}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer