Mathematics

# $\int \sqrt {x^2 + a^2} dx =\dfrac{x}{2} \sqrt {x^2 + a^2} + \dfrac{a^2}{2} log (x +\sqrt {x^2 + a^2)} +c$

True

Its FREE, you're just one step away

TRUE/FALSE Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Single Correct Medium
If $\dfrac{d}{dx}f(x)=g(x)$ then $\displaystyle \int_{a}^{b}f(x)g(x)dx=$
• A. $\dfrac{f(b)-f(a)}{2}$
• B. $\dfrac{f(a)-f(b)}{2}$
• C. $\dfrac{{f}^{2}(a)-{f}^{2}(b)}{2}$
• D. $\dfrac{{f}^{2}(b)-{f}^{2}(a)}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int_{1}^{2}x^2 \ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
Evaluate $\displaystyle \int e^x \left [ \dfrac{\sqrt{1 - x^2} \sin^{-1} x + 1}{\sqrt{1 - x}^2} \right ]dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\displaystyle \int \dfrac{\sin x}{\sin 3x} dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Hard
The value of $\displaystyle \int \left ( 3x^{2}\tan \dfrac{1}{x}-x\sec^{2}\dfrac{1}{x} \right )dx$  is
• A. $x^{2}\tan \dfrac{1}{x}+c$
• B. $x\tan \dfrac{1}{x}+c$
• C. $\tan \dfrac{1}{x}+c$
• D. $x^{3}\tan \dfrac{1}{x}+c$