Mathematics

$$\int {{{\sqrt {{x^2} - 4} }}dx} $$


SOLUTION
$$I=\int \sqrt{x^2-4}dx$$
$$I=\int \sqrt{x^2-2^2}dx$$
$$I=\dfrac{x}{2}\sqrt{x^2-4}-\dfrac{4}{2}\log|x+\sqrt{x^2-4}|+C$$

$$I=\dfrac{x}{2}\sqrt{x^2-4}-2\log|x+\sqrt{x^2-4}|+C$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Solve
$$\int { \dfrac { x+2 }{ \sqrt { { x }^{ 2 }+2x+3 }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
$$\int \sin^{-1} \ (\dfrac{2x +2}{\sqrt{4x^{2} +8x +13}}\ )dx$$ = 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
$$\displaystyle\int{\frac{(1+x^2)dx}{(1-x^2)\sqrt{1+x^2+x^4}}} = $$
  • A. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{5}}{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{5}}\right|}+C$$
  • B. $$\displaystyle I=-\frac{1}{4\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{3}}{\sqrt{2x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{3}}\right|}+C$$
  • C. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{2x^2+\displaystyle\frac{1}{2x^2}+1}-\sqrt{3}}{\sqrt{2x^2+\displaystyle\frac{1}{2x^2}+1}+\sqrt{3}}\right|}+C$$
  • D. $$\displaystyle I=-\frac{1}{2\sqrt{3}}\log{\left|\frac{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}-\sqrt{3}}{\sqrt{x^2+\displaystyle\frac{1}{x^2}+1}+\sqrt{3}}\right|}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate :
$$\displaystyle \int tan^3 2x sec 2x dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer