Mathematics

$$\int {{{\sqrt {16 + {{\left( {\log x} \right)}^2}} } \over x}dx} $$ 


SOLUTION
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
What is $$\displaystyle\int { { e }^{ { e }^{ x } }{ e }^{ x }dx } $$ equal to?
  • A. $$2{ e }^{ { e }^{ x } }+c$$
  • B. $${ e }^{ { e }^{ x } }{ e }^{ x }+c$$
  • C. $$2{ e }^{ { e }^{ x } }{ e }^{ x }+c$$

    where $$c$$ is an arbitrary constant
  • D. $${ e }^{ { e }^{ x } }+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Evaluate the following integral
$$\int { \cfrac { 1 }{ x\left( 3+\log { x }  \right)  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
$$\displaystyle \int \frac {ln \left ( x \right )} {x\sqrt{1 + ln \left ( x \right )}} dx$$ equlas
  • A. $$\displaystyle \frac{4}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) - c$$
  • B. $$\displaystyle \frac{1}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) + c$$
  • C. $$\displaystyle 2 \sqrt{1 + ln \left | x \right |} (3ln \left | x \right | - 2) + c$$
  • D. $$\displaystyle \frac{2}{3} \sqrt{1 + ln \left | x \right |} (ln \left | x \right | - 2) + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve:
$$\displaystyle \int \dfrac{x\tan^{-1}{x^{2}}}{(1+x^{4})}\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int _{ 0 }^{ a }{ \left( f(x)+f(-x) \right)  } dx=$$
  • A. $$-\int _{ -a }^{ a }{ f(x)dx } $$
  • B. $$0$$
  • C. $$-\int _{ -a }^{ a }{ f(-x)dxz } $$
  • D. $$2\int _{ 0 }^{ a }{ f(x)dx } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer