Mathematics

# $\int { \sin ^{ 2 }{ b } } xdx\quad \quad$

##### SOLUTION
$\displaystyle\int{{\sin}^{2}{bx}dx}$

$=\dfrac{1}{2}\displaystyle\int{2{\sin}^{2}{bx}dx}$

$=\dfrac{1}{2}\displaystyle\int{\left(1-\cos{2bx}\right)dx}$

$=\dfrac{1}{2}\left[x-\dfrac{\sin{2bx}}{2b}\right]+c$

$=\dfrac{x}{2}-\dfrac{\sin{2bx}}{4b}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Solve : $\displaystyle \int \dfrac{1}{(1-x)\sqrt{x}}dx$ ?

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate:
$\int { \left( 2x+1 \right) \left( \sqrt { { x }^{ 2 }+x+1 } \right) } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Let $f$ be a function which is continuous and differentiable for all real $x$. If $f\left( 2 \right) = -4$ and $f^{ \prime }\left( x \right) \ge 6$ for all $x\in \left[ 2,4 \right]$, then
• A. $f\left( 4 \right) <8$
• B. $f\left( 4 \right) \ge 12$
• C. None of these
• D. $f\left( 4 \right) \ge 8$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Solve: $\displaystyle \int \frac{\sin 2x}{(3 + 4\cos x)^3} dx$

Solve $\int{\tan{\theta} \sec^{2}{\theta} \; d\theta}$