Mathematics

$$ \int { P\left( x \right) { e }^{ kx }dx=Q\left( x \right) { e }^{ 4x }+C }$$, where $$P(x)$$ is polynomial of degree $$n$$ and $$Q(x)$$ is polynomial of degree $$7$$. Then the value of $$ n+7+k+\lim _{ x\rightarrow \infty  }{ \dfrac { P\left( x \right)  }{ Q\left( x \right)  }  }$$ is:


ANSWER

$$22$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following $$\displaystyle \underset{1}{\overset{2}{\int}} \dfrac{5x^2}{x^2 + 4x + 3}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
Let $$\displaystyle\int _{ 0 }^{ 1 }{ \dfrac { { e }^{ t }dt }{ 1+t }  } $$ then $$\displaystyle \int _{ a-1 }^{ a }{ \dfrac { { e }^{ t }dt }{ t-a-1 }  } $$
  • A. $$Ae^ {-a}$$
  • B. $$-Ae^ {-a}$$
  • C. None of these
  • D. $$Ae^ {a}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
Let $$\displaystyle f(x)=\int{\frac{x^2}{(1+x^2)(1+\sqrt{1+x^2})}dx}$$ and $$f(0)=0$$. Then $$f(1)$$ is equal to
  • A. $$\log_e{(1+\sqrt{2})}$$
  • B. $$\displaystyle\log_e{(1+\sqrt{2})}+\frac{\pi}{4}$$
  • C. none of these
  • D. $$\displaystyle\log_e{(1+\sqrt{2})}-\frac{\pi}{4}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
$$\displaystyle\int{\frac{{(x+a)}^3}{x^3}+\frac{1-x^4}{1-x}-\frac{7}{x\sqrt{x^2-1}}+\frac{x+2}{{(x+1)}^2}+\frac{{(1+x)}^3}{\sqrt{x}}dx}$$ is equal to
  • A. $$\displaystyle x+2a\log{x}-\frac{3a^2}{x}-\frac{a^3}{2x^2}+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}-7\sec^{-1}{x}+\log{(x+1)}\\ -\frac{1}{x+1} +2\sqrt{x}+2x^{\displaystyle\frac{3}{2}}+\frac{6}{5}x^{\displaystyle\frac{5}{2}}+\frac{2}{7}x^{\displaystyle\frac{7}{2}}+C$$
  • B. $$\displaystyle x+3a\log{x}-\frac{3a^2}{x}-\frac{a^3}{2x^2}+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}-7\sec^{-1}{x}+\log{(x+1)}\\ -\frac{1}{x+1} +2\sqrt{x}+2x^{\displaystyle\frac{3}{2}}+\frac{6}{5}x^{\displaystyle\frac{5}{2}}+\frac{2}{7}x^{\displaystyle\frac{5}{2}}+C$$
  • C. none of these
  • D. $$\displaystyle x+3a\log{x}-\frac{3a^2}{x}-\frac{a^3}{2x^2}+x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}-7\sec^{-1}{x}+\log{(x+1)}\\ -\frac{1}{x+1} +2\sqrt{x}+2x^{\displaystyle\frac{3}{2}}+\frac{6}{5}x^{\displaystyle\frac{5}{2}}+\frac{2}{7}x^{\displaystyle\frac{7}{2}}+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer