Mathematics

# $\int _{ -\pi }^{ \pi }{ \frac { 2x(1+sinx) }{ { 1+cos }^{ 2 }x } dx }$

$\frac { { \pi }^{ 2 } }{ 4 }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int \frac{\sin \sqrt{x}}{\sqrt{\left ( x \right )}}dx$=
• A. $2\cos \sqrt{x}+c$
• B. $-2\sec \sqrt{x}+c$
• C. $2\sec \sqrt{x}+c$
• D. $-2\cos \sqrt{x}+c$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate:
$\int { \cfrac { { x }^{ 2 } }{ \left( 1+{ x }^{ 3 } \right) } } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integrals:
$\displaystyle \int { \cfrac { 1 }{ { x }^{ 2/3 }\sqrt { { x }^{ 2/3 }-4 } } } dx\quad$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Consider the integral $I=\displaystyle\int^{\pi}_0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}}_{0}$ ln $(\sin x)dx$ equal to?
• A. $4I$
• B. $2I$
• C. $I$
• D. $\dfrac{I}{2}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
solve $\int \frac{1}{1+e^{-1}}\;dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020