Mathematics

# $\int { n\sqrt { 1-{ n }^{ 2 } } dn }$

##### SOLUTION
$\int { n\sqrt { 1-{ n }^{ 2 } } dn } \quad 1-{ n }^{ 2 }=t$
$-2ndn=dt$
$ndn=\cfrac { -dt }{ 2 }$
$-\int { \cfrac { { t }^{ 1/2 }dt }{ 2 } } =-\cfrac { 1 }{ 2 } \cfrac { { t }^{ 3/2 } }{ 3/2 } =\cfrac { -1 }{ 3 } { \left( 1-{ n }^{ 2 } \right) }^{ 3/2 }$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate:

$\displaystyle\int\limits_1^2 {\dfrac{{\log x}}{{{x^2}}}} dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve the integral:-
$\int {{{\cos }^3}x\, {{\sin }^5}xdx = ?}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle I=\int \log\left ( \sqrt{1-x}+\sqrt{1+x} \right )dx,$ then I is equal to

• A. $\displaystyle x\log \left ( \sqrt{1-x}+\sqrt{1+x} \right )+\frac{1}{2}x+C$
• B. $\displaystyle x\log \left ( \sqrt{1-x}+\sqrt{1+x} \right )+\frac{1}{2}\sin^{-1}x+C$
• C. $\displaystyle x\log \left ( \sqrt{1-x}+\sqrt{1+x} \right )+\frac{1}{2}\sin^{-1}x+\frac{1}{2}x+C$
• D. $\displaystyle x\log \left ( \sqrt{1-x}+\sqrt{1+x} \right )+\frac{1}{2}\sin^{-1}x-\frac{1}{2}x+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int x^{3}d(tan^{-1}x)$ is equal to

Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$