Mathematics

$\int {\left( {\frac{1}{{\left( {\ell nx} \right)}} - \frac{1}{{{{(\ell nx)}^2}}}} \right)\,dx}$

SOLUTION

$\int {\left( {{1 \over {inx}} - {1 \over {inx}}} \right)dn}$

$= \int {1.{1 \over {inx}}dx - \int {{1 \over {{{(inx)}^2}}}dn} }$

$= {x \over {inx}} - \int{ - {1 \over {i{n^2}}}dn - \int {{1 \over {i{n^2}}}dn} }$

$= {x \over {inx}} + c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 114

Realted Questions

Q1 Subjective Medium
$\displaystyle \int \dfrac 1{x^2} dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate: $\displaystyle\int \sec x\tan x dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
If $\displaystyle\int{\frac{e^x(2-x^2)}{(1-x)\sqrt{1-x^2}}dx}=\mu e^x{\left(\frac{1+x}{1-x}\right)}^{\lambda}+C$, then $2(\lambda+\mu)$ is equal to
• A. $-1$
• B. $0$
• C. $2$
• D. $3$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int\{\frac{(\log x-1)}{1+(\log x)^{2}}\}^{2}dx$ is equal to
• A. $\displaystyle \frac{xe^{x}}{1+x^{2}}+c$
• B. $^{\dfrac{x}{x^{2}+1}+c}$
• C. $\displaystyle \frac{\log x}{(\log x)^{2}+1}+c$
• D. $\displaystyle \frac{x}{(\log x)^{2}+1}+c$

Given that for each $\displaystyle a \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$ exists. Let this limit be $g(a)$
In addition, it is given that the function $g(a)$ is differentiable on $(0, 1)$