Mathematics

$$\int \frac{(x^{2}+2)}{x+1} dx$$


SOLUTION
$$ \int \frac{x^{2}+2}{x+1}.dx $$ $$ = \int \left ( x-1 + \frac{3}{x+1} \right ).dx$$
$$ = \int \left ( x-1 \right ).dx + 3 \int \frac{1}{x+1}.dx = \frac{x^{2}}{2} - x + 3\, log \,|x+1|$$
$$ = \frac{x^{2}}{2} - x + 3\, log\, |x+1| + c $$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
Evaluate: $$\displaystyle \int (1+x -x^{-1})e^{x+x^{-1}}dx$$
  • A. $$(x +1)e^{x+x^{-1}}+c$$
  • B. $$(x -1)e^{x+x^{-1}}+c$$
  • C. $$-xe^{x+x^{-1}}+c$$
  • D. $$xe^{x+x^{-1}} + c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
If $$\displaystyle I=\int\frac{dx}{\sqrt{\left ( x-\alpha  \right )\left ( \beta -x \right )}},\left ( \beta < \alpha  \right )$$ then value of I is

  • A. $$\displaystyle \sin^{-1}\left ( \frac{x+\alpha+\beta }{\beta -\alpha } \right )$$
  • B. $$\displaystyle \sin^{-1}\left ( \frac{2x+\beta-\alpha }{\beta +\alpha } \right )+C$$
  • C. none of these
  • D. $$\displaystyle \sin^{-1}\left ( \frac{2x-\alpha -\beta }{\beta -\alpha } \right )+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
The following integral $$\displaystyle \int_{\pi/4}^{\pi/2} (2 cosec  x)^{17}dx$$ is equal to
  • A. $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{17} du$$
  • B. $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{17} du$$
  • C. $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u - e^{-u})^{16} du$$
  • D. $$\displaystyle \int_{0}^{log(1+\sqrt{2})} 2(e^u + e^{-u})^{16} du$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate $$\int \int_{R} e^{-(x^{2} + y^{2})}dx dy$$, where $$R$$ is the region bounded by the circle $$x^{2} + y^{2} = a^{2}$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
The average value of a function f(x) over the interval, [a,b] is the number $$\displaystyle \mu =\frac{1}{b-a}\int_{a}^{b}f\left ( x \right )dx$$
The square root $$\displaystyle \left \{ \frac{1}{b-a}\int_{a}^{b}\left [ f\left ( x \right ) \right ]^{2}dx \right \}^{1/2}$$ is called the root mean square of f on [a, b]. The average value of $$\displaystyle \mu $$ is attained id f is continuous on [a, b].

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer