Mathematics

# $\int_{\frac{\pi }{6}}^{\frac{\pi }{6}}\frac{sin x +cos x}{\sqrt{sin 2x}}dx$

##### SOLUTION

We have,

$\int_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{\sin x+\cos x}{\sqrt{\sin 2x}}dx}$

$=\int_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{\sin x+\cos x}{\sqrt{1-1+\sin 2x}}dx}$

$=\int_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{\sin x+\cos x}{\sqrt{1-{{\left( \sin x-\cos x \right)}^{2}}}}dx}$

$=\int_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{\dfrac{d}{dx}\left( \sin x-\cos x \right)}{\sqrt{1-{{\left( \sin x-\cos x \right)}^{2}}}}dx}\,\,\,\,\,\,\therefore \dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x$

$={{\left[ \sqrt{2}{{\sin }^{-1}}\left( \sin x-\cos x \right) \right]}_{-\dfrac{\pi }{6}}}^{\dfrac{\pi }{6}}$

$=\left[ \sqrt{2}{{\sin }^{-1}}\left( \sin \left( -\dfrac{\pi }{6} \right)-\cos \left( -\dfrac{\pi }{6} \right) \right) \right]-\left[ \sqrt{2}{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right) \right) \right]$

$=\left[ \sqrt{2}{{\sin }^{-1}}\left( -\sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right) \right) \right]-\left[ \sqrt{2}{{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right) \right) \right]$

$=\left[ \sqrt{2}{{\sin }^{-1}}\left( -\dfrac{1}{2}-\dfrac{\sqrt{3}}{2} \right) \right]-\left[ \sqrt{2}{{\sin }^{-1}}\left( \dfrac{1}{2}-\dfrac{\sqrt{3}}{2} \right) \right]$

$=\left[ \sqrt{2}{{\sin }^{-1}}\left( \dfrac{-1-\sqrt{3}}{2} \right) \right]-\left[ \sqrt{2}{{\sin }^{-1}}\left( \dfrac{1-\sqrt{3}}{2} \right) \right]$

$=\sqrt{2}\left[ {{\sin }^{-1}}\left( \dfrac{-1-\sqrt{3}}{2} \right) \right]-\left[ {{\sin }^{-1}}\left( \dfrac{1-\sqrt{3}}{2} \right) \right]$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$\displaystyle \int { \cfrac { 1 }{ x({ x }^{ 6 }+1) } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int_{-\pi/4}^{\pi/4}\dfrac {dx}{1 + \cos 2x}$ is equal to
• A. $2$
• B. $4$
• C. $0$
• D. $1$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate:
$\displaystyle \int _{ 0 }^{ 1 } x^2+ 2x$ dx

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Evaluate the following integrals:
$\int { \cfrac { { x }^{ 2 }({ x }^{ 4 }+4) }{ { x }^{ 2 }+4 } } dx$

$\int {\dfrac {\cos 2x}{\sin x}}dx$