Mathematics

# $\int {\frac{{dx}}{{\sqrt {2 - 4x + {x^2}} }}}$=?

##### SOLUTION
$\begin{array}{l} \int { \frac { { dx } }{ { \sqrt { 2-4x+{ x^{ 2 } } } } } } \\ =\int { \frac { { dx } }{ { \sqrt { { x^{ 2 } }-4x+4-2 } } } } \\ =\int { \frac { { dx } }{ { \sqrt { { { \left( { x-2 } \right) }^{ 2 } }-{ { \left( { \sqrt { 2 } } \right) }^{ 2 } } } } } } \\ =\log |\left( { x-2 } \right) +\sqrt { { { \left( { x-2 } \right) }^{ 2 } }-2+C } |+C \\ =\log |x-2+\sqrt { { x^{ 2 } }-4x+2 } |+C \end{array}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle\int { \dfrac { 1 }{ { 4 }x^{ 2 }-4x-7 } dx. }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\displaystyle \int \dfrac {1}{x^{2}(x^{4} + 1)^{3/4}} dx$ is equal to ____
• A. $\dfrac {-(1 + x^{4})^{1/4}}{x^{2}} + C$
• B. $\dfrac {-(1 + x^{4})^{1/4}}{2x} + C$
• C. $\dfrac {-(1 + x^{4})^{3/4}}{x} + C$
• D. $\dfrac {-(1 + x^{4})^{1/4}}{x} + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Multiple Correct Medium
The value of $\int (x-1) e^{-x}$ dx is equal to
• A. $xe^x + C$
• B. $xe^{-x} + C$
• C. $-xe^x + C$
• D. $-xe^{-x} + C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium

$\displaystyle \int_{-\pi}^{\pi}x^{2}\sin x dx=$
• A. $2 \pi$
• B. $\displaystyle \frac{\pi^{2}}{4}$
• C. $-\pi$
• D.

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int _{ 0 }^{ 2010 }{(x-[x]) }dx$ is equal to
• A. $2010$
• B. $4020$
• C. $None\ of\ these$
• D. $1005$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020